Глава 3. Асинхронные машины
3-23. Асинхронные исполнительные двигатели часть 3

Вращающий момент двигателя создается в результате взаимодействия вращающегося поля и вихревых токов, наведенных им в цилиндрической части ротора. С некоторым приближением можно контуры вихревых токов заменить эквивалентной клеткой. Активное сопротивление r2 такой клетки получается большим, тогда как ее индуктивное сопротивление х2 невелико: х2  (0,05  0,1)r2. При этих условиях в большой степени удовлетворяются указанные требования, предъявляемые к исполнительному двигателю.

В качестве исполнительного двигателя применяется также асинхронный двигатель с ферромагнитным полым ротором. Такой ротор выполняется в виде полого цилиндра из стали при толщине его стенки от 0,5 до 3 мм. Здесь внутренний статор не требуется, так как поток будет проходить по стенкам цилиндра. На торцах ротора укрепляются диски. Сквозь центральные отверстия дисков проходит жестко связанный с ними вал. Следовательно, конструкция получается более простой, чем в предыдущем случае.

Выполнение его обмоток статора и схемы их включения такие же, как у двигателя с немагнитным полым ротором (рис. 3-98).

Воздушный зазор между статором и ротором в рассматриваемом двигателе берется небольшой (0,2 — 0,3 мм); однако намагничивающие токи его обмоток почти такие же, как у двигателей с немагнитным полым ротором. Объясняется это тем, что магнитная проводимость ферромагнитного полого ротора вследствие малой его толщины незначительна.

Активное сопротивление r2 такого ротора велико, так как удельное сопротивление стали значительно больше, чем меди и алюминия, и, кроме того, здесь резко сказывается эффект вытеснения тока к внешней цилиндрической поверхности ротора, особенно при большой частоте f2 = sf1.

С целью уменьшения r2 иногда производится омеднение ротора: гальваническим путем внешняя цилиндрическая поверхность ротора покрывается слоем меди толщиной 0,05 — 0,1 мм, а торцовые поверхности — слоем меди толщиной до 1 мм. Однако при этом возрастает зазор (от статора до стальной поверхности ротора). Поэтому в ряде случаев ограничиваются омеднением только торцовых поверхностей ротора.

По быстродействию двигатель уступает двигателю с немагнитным полым ротором.

Находит себе применение в качестве исполнительного двигателя и короткозамкнутый двигатель с беличьей клеткой на роторе, имеющей большое активное сопротивление. Его обмотки статора включаются также по схемам, приведенным на рис. 3-98.

Следует еще рассмотреть асинхронный двигатель с массивным ферромагнитным ротором, который применяется в качестве исполнительного, когда приходится приводить во вращение тяжелые маховые массы и когда, следовательно, собственный момент инерции двигателя имеет относительно малое значение. Характеристики этого двигателя несколько лучше, чем у двигателя с ферромагнитным полым ротором. Здесь также иногда применяется омеднение ротора.

Конструкция массивного ротора — более простая и механически значительно более прочная и надежная, чем полого ротора и ротора с беличьей клеткой, собранного из тонких листов. Этим и объясняется, что двигатели с массивным стальным ротором в настоящее время выполняются на очень большие частоты вращения (до 120000—150000 об/мин).

К недостаткам рассматриваемого двигателя, препятствующим его применению взамен обычного короткозамкнутого двигателя, следует отнести относительно низкий максимальный момент Мм из-за повышенного индуктивного сопротивления х2 ротора, большие потери в роторе и, следовательно, низкий к.п.д.

 

Дальше

Вверх

3-1.
3-2.
 
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.
3-22.

3-23.
 Часть 1
 Часть 2
 Часть 3

3-24.
3-25.
3-26.
3-27.
3-28.
3-29.

3-30.
3-31.

3-32.
3-33.
 

Глава 4