Глава 4. Синхронные машины
4-12. Качания синхронной машины Часть 5

Для спокойной работы машины необходимо стремиться к тому, чтобы частота собственных колебаний была меньше частоты первой гармоники избыточного момента (ωсв < ωc), а следовательно, и меньше частоты любой из высших гармоник (ωсв < νωc). В большинстве случаев это удается сделать, увеличивая маховой момент агрегата.

При одиночной работе синхронного генератора, когда он работает на свою собственную сеть, не имеющую других синхронных машин, не может возникнуть синхронизирующий момент, так как при колебаниях вектор  будет колебаться вместе с вектором . Следовательно, такая машина не представляет собой системы, способной к собственным колебаниям.

Приведем здесь практические формулы для расчета частоты собственных колебаний. Они получаются путем преобразования уравнения (4-114).

Удельный синхронизирующий момент (Момент  при колебаниях будет несколько изменяться вследствие изменения E0 и xd. Величины E0 и xd не остаются постоянными при колебаниях из-за воздействия на соответствующие поля токов, возникающих в успокоительной обмотке и главным образом в обмотке возбуждения, так как ее постоянная времени соизмерима с периодом колебаний. Поэтому приведенные выводы следует рассматривать как приближенные.), если принять cosθ0  l, равен:

где  — ток короткого замыкания при данном возбуждении (E0 по спрямленной характеристике холостого хода, xd — ненасыщенное значение).

Имеем

,

где Sн — номинальная мощность, кВ·А.

Заменим далее момент инерции J маховым моментом

,

где g = 9,81 м/с2;

G — вес всех вращающихся частей, кг, приведенный к диаметру инерции D, м.

Теперь, учитывая, что  и , получим вместо (4-114), Гц:

где .

Частота собственных колебаний fсв для дизель-генераторов и крупных гидрогенераторов обычно лежит в пределах fсв = 1  2 Гц.

 

Дальше

Вверх

4-1.
4-2.

4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.

4-12.
  Часть 1
  Часть 2
  Часть 3
  Часть 4
  Часть 5

4-13.
4-14.
4-15.
 

Глава 5