Глава 5. Машины постоянного тока
5-4. Электродвижущая сила

На рис. 5-20 представлена кривая поля машины при холостом ходе (или кривая распределения индукции В в воздушном зазоре вдоль окружности якоря). Допустим, что щетки стоят на геометрической нейтрали. Тогда можем считать, что при y1 = t все проводники одной параллельной ветви обмотки находятся как бы под одним полюсом, так как в этом случае э.д.с. сторон витка складываются арифметически.

Электродвижущая сила, наводимая в проводнике, движущемся со скоростью v и имеющем активную длину l, равна:

ex = Bxlv,          (5-10)

где Вх— индукция в той точке, где в данный момент находится проводник.

Для определения э.д.с. параллельной ветви Еa (э.д.с. якоря) нужно просуммировать э.д.с. всех N/2a проводников, составляющих параллельную ветвь (N — общее число проводников обмотки якоря):

.          (5-11)

Сумму индукций в правой части формулы (5-11) с большой точностью можно заменить произведением средней индукции Вср (рис. 5-20) и числа N/2a:

.          (5-12)

Подставляя в (5-11)  и найденное значение суммы индукций, а также учитывая, что

,          (5-13)

получим искомую формулу для э.д.с.:

,          (5-14)

где Ф — магнитный поток, В·с.

Отметим, что под Ф в формуле (5-14) следует понимать магнитный поток, определяемый площадью фигуры, ограниченной кривой поля, осью абсцисс и линиями, проведенными через щетки (рис. 5-20). Если щетки сместить с геометрической нейтрали, то э.д.с. в параллельной ветви уменьшится в соответствии с уменьшением потока Ф, так как последний теперь будет определяться разностью площадей А и В (рис. 5-20).

Рис. 5-20. Кривая поля и наведение э.д.с. в параллельной ветви обмотки якоря.

 

Дальше

Вверх

5-1.
5-2.
5-3.

5-4.

5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.
 

Глава 6