Глава 4. Синхронные машины
4-1. Общие сведения Часть 3

Частота тока, наведенного в обмотке якоря, определяется частотой вращения п, об/мин, и числом пар полюсов р ротора:  Гц. Таким образом, для получения стандартной частоты f = 50 Гц нужно, например, при 2р = 2 иметь частоту вращения п = 3000 об/мин (с такой частотой работают почти все современные турбогенераторы), при 2р = 72 п = = 83,3 об/мин (с такой частотой работают днепровские гидрогенераторы).

Синхронные двигатели, как правило, выполняются в виде явнополюсных машин обычно на мощности от 100 кВт и выше и на самые различные частоты вращения. Они обладают рядом преимуществ по сравнению с асинхронными двигателями, особенно при большой мощности и низкой частоте вращения, так как могут работать с соs φ = 1 или с опережающим током, улучшая в последнем случае соs φ = 1 всей электроустановки.

Наряду с синхронными генераторами и двигателями применяются также синхронные компенсаторы. Они представляют собой синхронные двигатели, работающие вхолостую (без нагрузки на валу) и позволяющие в широких пределах изменять потребляемый ими реактивный ток. Последнее достигается, как будет показано, путем изменения тока возбуждения синхронных компенсаторов, которые в большинстве случаев работают, потребляя опережающий реактивный ток, т. е. как конденсаторы. Они служат для компенсации сдвига фаз тока и напряжения (для улучшения соsφ) или для регулирования напряжения, например в конце линии электропередачи.

Режим работы синхронной машины, для которого она предназначена, характеризуется указанными на ее щитке номинальными величинами. На щитке синхронной машины указываются: 1) для какого режима работы машина предназначается (генератор, двигатель или компенсатор); 2) мощность (для генератора — кажущаяся мощность в В·А или кВ·А, а также — активная мощность в Вт или кВт; для двигателя — мощность на валу в Вт или кВт; для компенсатора— реактивная мощность при опережающем токе в В·А или кВ·А); 3) линейный ток в А; 4) линейное напряжение в В или кВ; 5) соsφ; 6) число фаз; 7) соединение обмотки статора (звезда или треугольник); 8) частота тока в Гц; 9) частота вращения ротора в об/мин; 10) напряжение возбуждения; 11) наибольший допустимый ток возбуждения в А (за номинальный ток возбуждения принимается ток, соответствующий номинальному режиму работы).

Следует отметить, что если для трансформатора допустимая нагрузка вполне определяется кажущейся мощностью в кВ·А, то для синхронного генератора отдаваемая им мощность в киловольт-амперах не вполне определяет его допустимую нагрузку. Необходимо указать также допустимый соsφ нагрузки генератора при отстающем токе. Последнее объясняется тем, что при работе генератора с отстающим током размагничивающее действие этого тока на основное поле будет тем больше, чем ниже соsφ, а потому, чем ниже соsφ, тем больший ток возбуждения требуется для поддержания на зажимах генератора номинального напряжения.

Мы вначале будем рассматривать работу синхронной машины в режиме генератора. При этом будем иметь в виду, что синхронная машина (как любая другая электрическая машина) обратима и что основные электромагнитные процессы в ней одинаковы независимо от того, работает ли она в режиме генератора или двигателя.

Различие между тем и другим режимами заключается в том, что в генераторе сдвиг между э.д.с. обмотки якоря и ее током меньше 90°, а в двигателе тот же сдвиг больше 90°. Вследствие этого электромагнитный момент, действующий на ротор, в генераторе направлен против вращения, а в двигателе в сторону вращения.

 

Дальше

Вверх

4-1.
  Часть 1
  Часть 2
  Часть 3

4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
 

Глава 5