Глава 1. Общие сведения об электрических машинах
1-3. Материалы, применяемые для трансформаторов и электрических машин  часть 1

Для изготовления трансформаторов и электрических машин применяются следующие материалы: конструкционные, «активные» и изоля­ционные.

Конструкционные материалы идут на изготовление тех частей и деталей машин и трансформаторов, которые служат главным образом для передачи и восприятия механических воздействий. В электрических машинах в основном применяются те же конструкционные материалы, что и в общем машиностроении: чугун (простой, ковкий), сталь (литая, кованая), цветные металлы и их сплавы, пластмассы.

Активные материалы служат в качестве магнитных и проводниковых (токопроводящих) для создания в трансформаторах или машинах необходимых условий, в которых протекают электромагнитные процессы.

Некоторые части электрических машин работают в сложных физических условиях, поэтому к ряду материалов предъявляются требования, относящиеся одновременно как к механическим, так и к магнитным и электрическим свойствам их.

Изоляционные материалы имеют своим назначением электрически изолировать токопроводящие части трансформаторов и машин от других их частей и друг от друга.

а) Магнитные материалы. Для сердечников трансформаторов применяется специальная электротехническая листовая сталь с относительно большим содержанием кремния (до 4—5%) толщиной обычно 0,5 или 0,35 мм при частоте переменного тока 50 Гц. При более высоких частотах тока, например при 300—400 Гц и выше, толщина стали выбирается 0,20 и 0,10 мм. В этом случае значительно снижаются потери от вихревых токов, наведенных переменным магнитным полем, имеющим место в сердечнике трансформатора.

Для изготовления отдельных частей магнитной системы электрических машин применяются различные ферромагнитные материалы: листовая электротехническая сталь различных сортов, чугун, стальное литье, листовая (конструкционная) сталь, кованая сталь.

Те части машины, где имеет место переменное магнитное поле, собираются из изолированных один от другого листов электротехнической стали с содержанием кремния до 2—3% обычно толщиной 0,5 мм.

Потери мощности в листовой стали от гистерезиса и вихревых токов характеризуются удельными потерями, т. е. потерями в 1 кг стали при частоте 50 Гц и синусоидальном изменении индукции при амплитуде, равной 10000 Гс. Они составляют для листовой стали, применяемой для нормальных машин, при толщине 0,5 мм — около 3 Вт/кг; для листовой стали с содержанием кремния до 4—5%, применяемой для трансформаторов, при толщине 0,5 мм — около 1,4— 1,5 Вт/кг, при толщине 0,35 мм — около 1,3—1,2 Вт/кг. Указанная листовая сталь называется горячекатаной (по способу изготовления). В последние годы она в ряде случаев вытесняется холоднокатаной листовой сталью, имеющей более высокие электромагнитные свойства (большее значение магнитной проницаемости и меньшие удельные потери). Холоднокатаная сталь в настоящее время широко применяется для трансформаторов и крупных электрических машин. Чугун применяется для частей магнитной системы крайне редко из-за его плохих магнитных свойств.

Стальное литье и кованая сталь, так же как и конструкционная листовая сталь, применяются для тех частей магнитной системы машин, в которых имеет место постоянное магнитное поле.

б) Проводниковые материалы. К ним относится прежде всего медь — сравнительно недорогой материал, имеющий малое удельное сопротивление.

Наряду с медью для проводников применяются также алюминий и иногда некоторые сплавы (латунь, фосфористая бронза). Медные и алюминиевые провода для обмоток трансформаторов и электрических машин изготовляются круглых и прямоугольных сечений с различными видами изоляции. Для изоляции применяются хлопчатобумажная пряжа, телефонная бумага, асбест, стеклопряжа, пластмассы, синтетические пленки, специальные эмалевые лаки.

Провода с хлопчатобумажной изоляцией широко применяются для нормальных трансформаторов и электрических машин.

Для машин небольшой и средней мощности (примерно до 300 кВт) на напряжения до 700 В часто выбираются провода с эмалевой изоляцией. Применяемые при этом нагревостойкие эмалевые лаки позволяют получить тонкое и вместе с тем достаточно надежное изоляционное покрытие проводов.

Продолжение

Вверх

1-1.
1-2.

1-3.
часть 1
часть 2

1-4.
1-5.
1-6.
1-7.
 

Глава 2