Двухфазные асинхронные машины

Теория и расчет

Магнитодвижущие СИЛЫ несимметричных электрических машин Двухфазная несимметричная обмотка

Симметричная / несимметричная машина

Классическая теория ЭМ рассматривает симметричную электрическую машину

- » Конструктивная симметрия
 - Оси фаз статора смещены в пространстве на эл.угол $\pi/2$ при m = 2 (или на $2\pi/3$ при m = 3)
 - Одинаковое число эффективных витков фаз $w_A = w_B$
 - Одинаковое число одинаковых пазов на фазу $N_{zA} = N_{zB}$
 - Одинаковый провод в фазе $d_A = d_B$
 - Одинаковые сопротивления фаз $r_A = r_B$, $x_A = x_B$, $Z_A = Z_B$

Нарушение любого условия ведет к конструктивной несимметрии

- » Симметричное питание
 - Напряжения фаз равны по амплитуде $|U_A| = |U_B|$
 - Напряжения фаз сдвинуты во времени на эл.угол $\pi/2$ при m=2 (или на $2\pi/3$ при m=3)

Нарушение любого условия ведет к несимметричному питанию

Симметричная ЭМ имеет круговое вращающееся поле в зазоре, для которого разработана теория и уравнения

Симметричная / несимметричная машина

Микромашины, как правило, несимметричны

- » по конструктивному исполнению
- » из-за несимметричного питания
- » и то и другое одновременно

Особенность микромашин – питание от однофазной сети При этом сами машины имеют многофазную обмотку

Рассмотрим:

- » Теория двухфазных асинхронных машин
 - электрическая несимметрия (питание и обмотки) при симметричном магнитопроводе
- » Теория синхронных машин
 - магнитная несимметрия (явнополюсность ротора) при воздействии кругового поля

Метод круговых вращающихся полей – для анализа произвольной несимметрии

Рассмотрим распределенную фазную обмотку переменного тока

при протекании по фазе переменного тока $i = \sqrt{2}I_{\phi} \cos \omega t$ фаза образует магнитодвижущую силу $f_{\phi 1} = F_{\phi 1m} \cos \frac{\pi x}{\tau} \cos \omega t$ создающую переменное (пульсирующее) магнитное поле

Амплитуда основной гармоники МДС $F_{\phi 1m} = rac{2\sqrt{2}I_{\phi}w_{\phi}k_{o6}}{\pi p}$ где I_{ϕ} – действующее значение тока фазы

 w_{d} – число витков фазы

 $k_{
m o 6}$ – обмоточный коэффициент основной гармоники

р-число пар полюсов фазы (обмотки)

МДС (и пульсирующее магнитное поле) направлены по оси фазы

Разложим пульсирующую МДС на прямую F_1 и обратную F_2 составляющие:

- » имеют одинаковые амплитуды $F_{\oplus 1m}/$ 2
- » вращаются в пространстве с одинаковой угловой скоростью $\Omega=\omega/p$
- » вращаются в противоположные стороны

Та составляющая, что вращается в сторону вращения ротора,

– прямая составляющая F_1

Тогда F_2 – обратная составляющая

В любой момент времени геометрическая сумма вращающихся МДС F_1 и F_2 равна исходной пульсирующей МДС

$$f_{\phi 1} = F_1 + F_2 = \frac{F_{\phi 1m}}{2} \cos\left(\omega t - \frac{\pi x}{\tau}\right) + \frac{F_{\phi 1m}}{2} \cos\left(\omega t + \frac{\pi x}{\tau}\right)$$

Рассмотрим значения МДС через 1/8 периода (45°)

ЭМАУ Ширинский С.В., каф.ЭМЭЭА, НИУ «МЭИ»

Изменение МДС во времени

Изменение МДС в пространстве

Микромашины, как правило, имеют двухфазную обмотку

Рассмотрим 2-фазную ЭМ с обмотками А и В

- сдвинутыми в пространстве на угол $\boldsymbol{\theta}$
- имеющими разные числа витков w_A ≠ w_B

По обмоткам протекают гармонические токи i_A и i_B

- разные по величине $I_{Am} \neq I_{Bm}$
- сдвинутые во времени на угол β

$$i_A = \sqrt{2}I_A \cos \omega t$$
 $i_B = \sqrt{2}I_B \cos(\omega t + \beta)$

Магнитодвижущие силы фазных обмоток

$$F_A = F_{Am} \cos \frac{\pi x_A}{\tau} \cos \omega t$$
 $F_B = F_{Bm} \cos \frac{\pi x_B}{\tau} \cos (\omega t + \beta)$

Каждая МДС – пульсирующая по оси фазы

Каждую [пульсирующую] МДС разложим на прямую и обратную [вращающиеся] составляющие

$$\overline{F}_A = \overline{F}_{A1} + \overline{F}_{A2} \quad \overline{F}_B = \overline{F}_{B1} + \overline{F}_{B2}$$

На рисунке при t = 0

$$F_A = F_{Am} \rightarrow \text{составляющие } F_{A1} + F_{A2}$$

 $F_B = F_{Bm} \cos\beta \rightarrow \text{составляющие } F_{B1} + F_{B2}$

Рассмотрим прямые и обратные составляющие отдельно

 F_{A1} и F_{B1} вращаются со скоростью + ω \rightarrow прямая составляющая F_1

$$\overline{F}_1 = \overline{F}_{A1} + \overline{F}_{B1}$$

 $F_{\!A2}$ и F_{B2} вращаются со скоростью $\,-\omega$ \rightarrow обратная составляющая F_2

$$\overline{F}_2 = \overline{F}_{A2} + \overline{F}_{B2}$$

Найдем МДС прямой последовательности F_1 из треугольника ODC

$$F_1 = OC = \sqrt{OD^2 + DC^2 - 2 \cdot OD \cdot DC \cdot \cos \angle ODC}$$

Здесь
$$\angle ODC = 180^\circ - \angle ADC = 180^\circ - (\theta - \beta)$$

 $\cos \angle ODC = \cos(180^\circ - (\theta - \beta)) = -\cos(\theta - \beta)$

Кроме того

$$OD = F_{A1} = F_{Am} / 2$$
$$DC = F_{B1} = F_{Bm} / 2$$

Таким образом

$$F_{1} = \frac{1}{2}\sqrt{F_{Am}^{2} + F_{Bm}^{2} + 2F_{Am}F_{Bm}\cos(\theta - \beta)}$$

Аналогично найдем МДС обратной последовательности ${\cal F}_2$ из треугольника ODK

$$F_2 = OK = \sqrt{OD^2 + DK^2 - 2 \cdot OD \cdot DK \cdot \cos \angle ODK}$$

Здесь
$$\angle ODK = 180^\circ - \angle ADK = 180^\circ - (\theta + \beta)$$

 $\cos \angle ODK = \cos(180^\circ - (\theta + \beta)) = -\cos(\theta + \beta)$

учитывая

$$OD = F_{A2} = F_{Am} / 2$$
$$DK = F_{B2} = F_{Bm} / 2$$

получим

$$F_{2} = \frac{1}{2}\sqrt{F_{Am}^{2} + F_{Bm}^{2} + 2F_{Am}F_{Bm}\cos(\theta + \beta)}$$

С помощью выражений

$$F_{1} = \frac{1}{2}\sqrt{F_{Am}^{2} + F_{Bm}^{2} + 2F_{Am}F_{Bm}\cos(\theta - \beta)}$$
$$F_{2} = \frac{1}{2}\sqrt{F_{Am}^{2} + F_{Bm}^{2} + 2F_{Am}F_{Bm}\cos(\theta + \beta)}$$

можно определить МДС прямой и обратной последовательностей

- » при любых МДС (токах) обмоток F_{Am}, F_{Bm}
- » при любых пространственных углах между обмотками heta
- » при любых углах сдвига токов во времени β

(т.е. при любой несимметрии обмоток)

Особенность двухфазной машины: поскольку cos(θ-β) = cos(θ+β) характер магнитного поля несимметричной машины в равной степени определяется углами θ и β

Оценим пусковой момент двухфазного асинхронного двигателя

Электромагнитный момент (от взаимодействия тока и потока) пропорционален квадрату потока В ненасыщенной машине магнитный поток пропорционален МДС (при $\Lambda_{\delta} = ext{const}$): магнитный поток прямовращающегося поля $\Phi_1 \sim F_1$ магнитный поток обратновращающегося поля $\Phi_2 \sim F_2$

Тогда пусковой момент несимметричного двигателя *М* где c_M – постоянный коэффициент

$$M_{\kappa} = c_M \left(F_1^2 - F_2^2 \right)$$

Подставив выражения МДС F_1 и F_2 получим

$$M_{\kappa} = \frac{1}{2} c_M F_{Am} F_{Bm} \left(\cos(\theta - \beta) - \cos(\theta + \beta) \right)$$

Сучетом
$$\cos \alpha - \cos \gamma = -2\sin \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2}$$
 запишем $M_{\kappa} = c_M F_{Am} F_{Bm} \sin \theta \sin \beta$

Оценим пусковой момент двухфазного асинхронного двигателя

 $M_{\kappa} = c_M F_{Am} F_{Bm} \sin \theta \sin \beta$

- » Пусковой момент в равной степени определяется углами θ и β
- » При любом пространственном сдвиге обмоток (кроме θ = 0 и θ = 180°) максимум пускового момента достигается при временном сдвиге β = 90°
- » При любом временном сдвиге токов (кроме β = 0 и β = 180°)
 максимум пускового момента достигается при пространственном сдвиге θ = 90°
- » Абсолютный максимум пускового момента достигается при углах θ = 90° и β = 90°
 (при одних и тех же потребляемых из сети токах фаз)

Круговое и Эллиптическое ПОЛЕ в электрической машине

Каждая составляющая F_1 и F_2 образует круговое вращающееся поле Результирующее поле в ЭМ будет круговым при условии $F_2 = 0$ (или $F_1 = 0$)

Пусть
$$F_2 = 0$$
 $F_2 = \frac{1}{2}\sqrt{F_{Am}^2 + F_{Bm}^2 + 2F_{Am}F_{Bm}\cos(\theta + \beta)} = 0$
или $F_{Am}^2 + F_{Bm}^2 + 2F_{Am}F_{Bm}\cos(\theta + \beta) = 0$

$$E = E = (0, 0)$$

это возможно только при $F_{Am} = F_{Bm}$ и $\cos(\theta + \beta) = -1$, т.е. $(\theta + \beta) = 180^{\circ}$

Рассмотрим двухфазную ЭМ

- » с пространственным сдвигом обмоток на угол $\boldsymbol{\theta}$
- » в которой токи (и МДС) сдвинуты во времени на угол β

Разложим МДС фаз на составляющие $\overline{F}_A = \overline{F}_{A1} + \overline{F}_{A2}$ $\overline{F}_B = \overline{F}_{B1} + \overline{F}_{B2}$ Для исключения обратного поля необходимо

$$\overline{F}_2 = \overline{F}_{A2} + \overline{F}_{B2} = 0$$
 или $\overline{F}_{A2} = -\overline{F}_{B2}$

Для этого требуется $F_{Am} = F_{Bm}$ и $\beta = 180^{\circ}$ - θ

Для получившегося кругового поля найдем величину МДС (F_1) из Δ -ка OKM $F_1 = 2F_{A1}\cos\alpha = 2F_{A1}\cos\left(\frac{\beta-\theta}{2}\right)$ При круговом поле $F_{A1} = F_{B1} = \frac{F_{Am}}{2} = \frac{F_{Bm}}{2} = \frac{F_{\phi m}}{2}$ и $\beta = 180^\circ - \theta$ Тогда МДС $F_1 = F_{\phi m}\sin\theta$ Величина МДС кругового поля максимальна при пространственном сдвиге обмоток на угол $\theta = 90^\circ$

Подставив $\theta = 180^{\circ}$ - β (при круговом поле), получим $F_1 = F_{\phi m} \sin \beta$ Максимум МДС кругового поля имеет место при временном сдвиге токов на угол $\beta = 90^{\circ}$

Максимальная МДС кругового поля равна амплитуде МДС любой из фаз

$$F_{1\max} = F_{Am} = F_{Bm} = F_{\phi m}$$

Для получения максимального кругового поля в двухфазной машине при минимальных токах (минимальных потерях) стремятся получить:

- » пространственный сдвиг обмоток на угол 90°
- » временной сдвиг между токами на угол 90°

Рассмотрим МДС симметричной двухфазной машины при симметричном питании _

F_{Bto}

t_c

Atz.

 t_4

- » пространственный сдвиг обмоток $\theta=90^\circ$
- » временной сдвиг между МДС $\beta=90^\circ$

Найдем результирующую МДС Fчерез равные промежутки времени Годографом вектора F $F_{\mathcal{B}} = F_{\mathcal{B}m} \sin(\omega t + 90)$ является окружность $F_A = F_{Am} \sin \omega t$

Ats

 $t_5 t_8$

- » пространственный сдвиг обмоток на угол 90°
- » временной сдвиг между токами на угол 90°

Если $F_{Bm} = 0$, то эллипс вырождается в линию *CD*

» если $F_{Bm} = F_{Am}$ при $\beta = 0$, также получается линия *EH* (пульсирующее поле)

Эллиптическое поле образуется при наличии двух неравных МДС F_1 и F_2 , вращающихся с одинаковой скоростью в разные стороны

Рассмотрим МДС в различные моменты времени: t_0, t_1, t_2

(через 1/8 периода) $\overline{F}_{0} = \overline{F}_{10} + \overline{F}_{2}$

$$F_{t0} = F_{1t0} + F_{2t0}$$
$$\overline{F}_{t1} = \overline{F}_{1t1} + \overline{F}_{2t1}$$
$$\overline{F}_{t2} = \overline{F}_{1t2} + \overline{F}_{2t2}$$

Конец вектора результирующей МДС описывает эллипс

Большая ось эллипса $a = 2(F_1 + F_2)$ Малая ось эллипса $b = 2(F_1 - F_2)$

По известным параметрам эллипса можно определить МДС прямой и обратной последовательности

$$F_1 = \frac{a+b}{4} \quad F_2 = \frac{a-b}{4}$$

- » если одна из МДС равна нулю поле круговое
- » если МДС равны ($F_1 = F_2$) поле пульсирующее

Особенность эллиптического поля – непостоянная скорость вращения вектора результирующей МДС (и результирующего поля)

За время t_0 - t_1 (1/8 периода) векторы F_1 и F_2 поворачиваются в пространстве на углы $\pm 45^\circ$ При этом результирующий вектор F поворачивается на меньший угол $\Delta\gamma_1$

За следующий интервал t_1 - t_2 (1/8 периода) результирующий вектор F поворачивается на больший угол $\Delta\gamma_2$

При малых моментах инерции ротора это приводит к неравномерности вращения ротора

Найдем скорость вращения вектора FВ момент времени t $\overline{F} = \overline{F}_1 + \overline{F}_2$

Проекции векторов на оси а и b

$$F_{b} = F_{1b} + F_{2b} = F_{1} \sin \omega t + F_{2} \sin(-\omega t) = (F_{1} - F_{2}) \sin \omega t$$
$$F_{a} = F_{1a} + F_{2a} = F_{1} \cos \omega t + F_{2} \cos(-\omega t) = (F_{1} + F_{2}) \cos \omega t$$

Результирующий вектор МДС F за время t повернется на угол γ

tg
$$\gamma = \frac{F_b}{F_a} = \frac{F_1 - F_2}{F_1 + F_2}$$
tg $\omega t = k \cdot$ tg ωt
где $k = \frac{F_1 - F_2}{F_1 + F_2}$ – коэффициент формы эллипса

Найдем скорость вращения через изменение угла γ

Двухфазные асинхронные двигатели (микродвигатели)

Конструкция:

» Статор – сердечник с пазами и двумя распределенными обмотками

обмотки сдвинуты в пространстве на 90°

ightarrow можно получить круговое поле

при минимальных токах и потерях в обмотках

» Ротор – короткозамкнутый

Питание:

» обычно – от однофазной сети («однофазные двигатели»)

Несимметрия:

- » разное число витков в обмотках
- » иногда разное число пазов на обмотку

Как правило – несимметричный режим работы (эллиптическое поле) при электрической несимметрии (но симметрии магнитной цепи)

→ <u>двухфазный несимметричный асинхронный двигатель</u>

Методы анализа несимметричных ЭМ

» Метод вращающихся полей

фаза при питании переменным током — пульсирующее поле

- → прямо- и обратно- вращающиеся поля (круговые)
- ightarrow сумма таких полей от каждой фазы
- → анализ круговых полей и метод суперпозиции

» Метод симметричных составляющих

электрическая несимметрия / несимметричное питание

→ разложение несимметричной системы токов/напряжений

на симметричные составляющие

→ анализ симметричных составляющих и метод суперпозиции

» Метод двух реакций

магнитная несимметрия (явнополюсность)

- \rightarrow переход к системе координат d-q, вращающейся с ротором
- (по каждой оси в отдельности $R\mu$ = const)
- → анализ составляющих поля по каждой оси и метод суперпозиции

Базовая асинхронная машина для анализа

- » короткозамкнутый ротор
- » 2 перпендикулярные обмотки *A* и *B* на статоре
- равные числа одинаковых пазов на фазу $N_{zA} = N_{zB}$

» разные числа витков в фазе $w_{dA} \neq w_{dB}$ также разные эффективные числа витков $w_A (=k_{oA}w_{dbA}) \neq w_B (=k_{oB}w_{dbB})$

» → разные сопротивления фаз

 $r_A \neq r_B, x_A \neq x_B \rightarrow Z_A \neq Z_B$

Для получения кругового поля в такой машине необходимо выполнение условия $\dot{F}_{A} = -j\dot{F}_{B}$ или $\frac{0.9\dot{I}_{A}w_{A}}{n} = -j\frac{0.9\dot{I}_{B}w_{B}}{n}$ (в машинах с симметричной магнитной системой равенство МДС → равенство потоков) Т.е. токи должны быть Т.е. токи должны овть обратно пропорциональны числам витков: $\frac{I_A}{I_B} = \frac{W_B}{W_A}$ здесь $I'_B = kI_B -$ ток фазы B,

ЭМАУ Ширинский С.В., каф.ЭМЭЭА, НИУ «МЭИ»

и смещены во времени на $\beta = 90^{\circ}$: $\dot{I}_A = -j\dot{I}_B \frac{w_B}{w_A} = -j\dot{I}'_B$ $k = \frac{w_B}{w_A}$ приведенный к числу витков фазы A – коэффициент трансформации Внимание! В разных учебниках разное Внимание! В разных учебниках разное определение $k \rightarrow$ разные формулы!

Итак, для получения кругового поля $\dot{F}_A = -j\dot{F}_B$

 Φ_{A}

Поскольку измерять МДС или потоки затруднительно, можно анализировать напряжения

$$\dot{U}_A = -\dot{E}_A + \dot{I}_A Z_A \qquad \qquad \dot{U}_B = -\dot{E}_B + \dot{I}_B Z_B$$

Традиционно полагают

 $U_A \approx E_A = 4,44 f w_A \Phi_A$ $U_B \approx E_B = 4,44 f w_B \Phi_B$

Откуда потоки

$$\approx \frac{U_A}{4,44 f w_A} \qquad \Phi_B \approx \frac{U_B}{4,44 f w_B}$$

При равенстве потоков ($\Phi_A = \Phi_B \rightarrow$ поле круговое) должно быть (т.е. равны напряжения, приходящиеся на 1 виток)

Таким образом, для получения кругового поля надо подать на фазы напряжения

$$\dot{U}_{A} = -j\dot{U}_{B}\frac{w_{A}}{w_{B}} = -j\frac{\dot{U}_{B}}{k} = -j\dot{U}_{B}'$$

 $\frac{U_A}{M} = \frac{U_B}{M}$

К сожалению, на практике напряжения/токи несимметричны

Метод симметричных составляющих Для двухфазных цепей

Метод симметричных составляющих

Любая несимметричная система векторов *A* и *B*, сдвинутых во времени на произвольный угол β, может быть разложена на две симметричные системы, каждая из которых состоит из двух векторов, равных по амплитуде и сдвинутых во времени на 90°

- » Одна из этих систем имеет такое же чередование векторов A_1 и B_1 , что и исходная система (система векторов прямой последовательности)
- » Другая система имеет чередование векторов A₂ и B₂, обратное исходной (система векторов обратной последовательности)

Суммы одноименных векторов симметричных систем равны исходным векторам

$$\dot{F}_{A} = \dot{F}_{A1} + \dot{F}_{A2}$$
 $\dot{F}_{B} = \dot{F}_{B1} + \dot{F}_{B2}$

Векторы симметричных систем связаны между собой равенствами («симметричные составляющие»)

$$\dot{F}_{B1} = j\dot{F}_{A1} \qquad \dot{F}_{B2} = -j\dot{F}_{A2}$$

Симметричная система МДС создает круговое поле

Метод симметричных составляющих

Для разложения несимметричной системы векторов выразим F_B через составляющие F_A и найдем выражения для этих составляющих

Итак,
$$\dot{F}_{B} = \dot{F}_{B1} + \dot{F}_{B2} = j\dot{F}_{A1} - j\dot{F}_{A2}$$
 или $-j\dot{F}_{B} = \dot{F}_{A1} - \dot{F}_{A2}$
 \dot{F}_{B}
 $\dot{F}_{A} = \dot{F}_{B1}$
 $\dot{F}_{A1} = \dot{F}_{B1}$
 \dot{F}_{A1}
 \dot{F}_{A1}
 \dot{F}_{A1}
 $\dot{F}_{B2} = \dot{F}_{B1}$
 \dot{F}_{B2}
 \dot{F}_{B1}
 \dot{F}_{B1}
 \dot{F}_{A2}
 \dot{F}_{B2}
 \dot{F}_{B1}
 \dot{F}_{A2}
 \dot{F}_{B1}
 \dot{F}_{A1}

Решая систему уравнений

$$\begin{cases} \dot{F}_{A}=\dot{F}_{A1}+\dot{F}_{A2}\\ -j\dot{F}_{B}=\dot{F}_{A1}-\dot{F}_{A2} \end{cases}$$

найдем выражения для составляющих F_A

$$\dot{F}_{A1} = \frac{\dot{F}_A - j\dot{F}_B}{2}$$
 $\dot{F}_{A2} = \frac{\dot{F}_A + j\dot{F}_B}{2}$

При этом составляющие F_B

$$\dot{F}_{B1} = j\dot{F}_{A1} \qquad \dot{F}_{B2} = -j\dot{F}_{A2}$$
Можно определить симметричные составляющие графически

Обычно пользуются векторами не МДС, а токов

Симметричная система токов получится при использовании приведенных токов

Тогда, с учетом приведения числа витков Метод симметричных составляющих запишется как

$$\dot{I}_{A} = \dot{I}_{A1} + \dot{I}_{A2}$$
 $\dot{I}_{B} = \dot{I}_{B1} + \dot{I}_{B2}$

$$\dot{I}_{A1} = \frac{\dot{I}_A - jk\dot{I}_B}{2}$$
 $\dot{I}_{A2} = \frac{\dot{I}_A + jk\dot{I}_B}{2}$

$$k\dot{I}_{B1} = j\dot{I}_{A1}$$
 $k\dot{I}_{B2} = -j\dot{I}_{A2}$

Метод симметричных составляющих позволяет заменять эллиптическое поле на сумму двух круговых полей, вращающихся в противоположные стороны

> Уравнения пригодны для анализа любых несимметричных машин с двумя взаимно перпендикулярными обмотками

Они годятся и для анализа однофазных машин (предельный случай несимметрии)

Рассмотрим однофазную машину

Для этого положим в двухфазной машине $I_B = 0$

Тогда $\dot{I}_{A1} = \frac{\dot{I}_A - jk\dot{I}_B}{2} = \frac{\dot{I}_A}{2}$ $\dot{I}_{A2} = \frac{\dot{I}_A + jk\dot{I}_B}{2} = \frac{\dot{I}_A}{2}$ Проверим $\dot{I}_A = \dot{I}_{A1} + \dot{I}_{A2} = \frac{\dot{I}_A}{2} + \frac{\dot{I}_A}{2} = \dot{I}_A$ При этом $k\dot{I}_{B1} = j\dot{I}_{A1}$ $k\dot{I}_{B2} = -j\dot{I}_{A2}$ $\dot{I}_{B1} = \frac{j\dot{I}_{A1}}{k} = \frac{j\dot{I}_{A}}{2k}$ $\dot{I}_{B2} = -\frac{j\dot{I}_{A2}}{k} = -\frac{j\dot{I}_{A}}{2k}$ Проверим $\dot{I}_B = \dot{I}_{B1} + \dot{I}_{B2} = \frac{j\dot{I}_A}{2k} - \frac{j\dot{I}_A}{2k} = 0$

Пример Дано: вектор тока фазы A $\dot{I}_A = 1e^{-j\frac{\pi}{3}}$ вектор тока фазы B $\dot{I}_{P} = 1e^{-j\frac{\pi}{6}}$ \dot{I}_{B1} Коэффициент трансформации k=1 I_{A2} Найти симметричные составляющие токов $\dot{I}_{A1} = \frac{\dot{I}_A - jk\dot{I}_B}{2}$ +j $\dot{I}_{A1} = \frac{1 \cdot (\cos(-60^\circ) + j\sin(-60^\circ)) - j \cdot 1 \cdot 1 \cdot (\cos(-30^\circ) + j\sin(-30^\circ))}{2}$ \dot{I}_{B2} $\dot{I}_{A1} = \frac{(0, 5 - j0, 866) - j(0, 866 - j0, 5)}{2} \qquad \dot{I}_{A1} = -j0, 866 \,[A]$ $\dot{I}_{B1} = \frac{jI_{A1}}{k} = \frac{j(-j0,866)}{1} = 0,866 \,[A]$ $\dot{I}_{A2} = \frac{\dot{I}_A + jk\dot{I}_B}{2} = \frac{1 \cdot (\cos(-60^\circ) + j\sin(-60^\circ)) + j \cdot 1 \cdot 1 \cdot (\cos(-30^\circ) + j\sin(-30^\circ))}{2}$ $\dot{I}_{B2} = \frac{-j\dot{I}_{A2}}{L} = \frac{-j(0,5)}{1} = -j0,5$ [A] $\dot{I}_{A2} = \frac{\left(0, 5 - j0, 866\right) + j\left(0, 866 - j0, 5\right)}{2}$ $\dot{I}_{A2} = 0,5 [A]$ ЭМАУ

Ширинский С.В., каф.ЭМЭЭА, НИУ «МЭИ»

 I_{R}

 I_{A1}

Расчет составляющих токов

Наиболее общая схема двухфазной несимметричной асинхронной машины

- » Обмотки статора с разным числом
 эффективных витков w_A ≠ w_B
- » Фазосдвигающий элемент Z_{f} в фазе B
- » На фазе A напряжение U_A
- » Напряжение U_B на обмотке фазы B и фазосдвигающем элементе Z_f
- » U_{B} делится между $U_{\mathrm{d}B}$ и $U_{Z\!f}$
- » В общем случае напряжения U_A и U_B не равны по величине и сдвинуты на произвольный угол β

В несимметричной асинхронной машине токи фаз *A* и *B* образуют несимметричную систему токов Разложим их на симметричные составляющие

$$\dot{I}_{A1} = \frac{\dot{I}_A - jk\dot{I}_B}{2} \qquad \dot{I}_{A2} = \frac{\dot{I}_A + jk\dot{I}_B}{2} \qquad \dot{I}_{B1} = \frac{j\dot{I}_{A1}}{k} \qquad \dot{I}_{B2} = -\frac{j\dot{I}_{A2}}{k}$$
$$\dot{I}_A = \dot{I}_{A1} + \dot{I}_{A2} \qquad \qquad \dot{I}_B = \dot{I}_{B1} + \dot{I}_{B2}$$

Напряжения фаз запишем как падения напряжения

$$\dot{U}_{A} = \dot{I}_{A1}Z_{A1} + \dot{I}_{A2}Z_{A2} = \dot{U}_{A1} + \dot{U}_{A2}$$
$$\dot{U}_{B} = \dot{I}_{B1}Z_{B1} + \dot{I}_{B2}Z_{B2} = \dot{U}_{B1} + \dot{U}_{B2}$$

 $\dot{U}_{A1}, \dot{U}_{A2}$ – падения напряжения на сопротивлениях Z_{A1}, Z_{A2} фазы A от токов I_{A1}, I_{A2} $\dot{U}_{B1}, \dot{U}_{B2}$ – падения напряжения на сопротивлениях Z_{B1}, Z_{B2} фазы B от токов I_{B1}, I_{B2}

Если токи фаз разложены на симметричные составляющие, то векторы U_{A1}, U_{B1} и U_{A2}, U_{B2} не образуют симметричные системы напряжений (из-за наличия Z_f)

Токи прямой составляющей I_{A1}, I_{B1} создают прямовращающееся круговое поле и вращающий момент Токи обратной составляющей I_{A2}, I_{B2} создают обратновращающееся круговое поле и тормозной момент

Двухфазную несимметричную машину можно представить как совместную работу двух двухфазных симметричных машин на общий вал

Это модель, а в реальности:

- » в фазе A протекают токи I_{A1} и I_{A2} (вместе $\rightarrow I_A$)
- » в фазе B протекают токи I_{B1} и I_{B2} (вместе \rightarrow I_{B})
- » в обмотке ротора протекают токи, наведенные прямо-вращающимся и обратно-вращающимся полями статора

В системе уравнений

$$\begin{cases} U_{A} = I_{A1}Z_{A1} + I_{A2}Z_{A2} \\ \dot{U}_{B} = \dot{I}_{B1}Z_{B1} + \dot{I}_{B2}Z_{B2} \end{cases}$$

выразим токи фазы B через токи фазы A

$$\dot{I}_{B1} = \frac{j\dot{I}_{A1}}{k}$$
 $\dot{I}_{B2} = -\frac{j\dot{I}_{A2}}{k}$

Получим

$$\begin{pmatrix} \dot{U}_{A} = \dot{I}_{A1}Z_{A1} + \dot{I}_{A2}Z_{A2} \\ -jk\dot{U}_{B} = \dot{I}_{A1}Z_{B1} - \dot{I}_{A2}Z_{B2} \end{pmatrix}$$

Решим систему уравнений относительно токов фазы А

Прямая составляющая тока фазы А

Обратная составляющая тока фазы ${\cal A}$

Составляющие тока фазы В тогда

$$\dot{I}_{A1} = \frac{\dot{U}_A Z_{B2} - jk \dot{U}_B Z_{A2}}{Z_{A1} Z_{B2} + Z_{A2} Z_{B1}}$$
$$\dot{I}_{A2} = \frac{\dot{U}_A Z_{B1} + jk \dot{U}_B Z_{A1}}{Z_{A1} Z_{B2} + Z_{A2} Z_{B1}}$$
$$\dot{I}_{B1} = \frac{j \dot{I}_{A1}}{k} \quad \dot{I}_{B2} = -\frac{j \dot{I}_{A2}}{k}$$

Это решение для самого общего случая двухфазной несимметричной асинхронной машины

Схемы замещения несимметричных асинхронных машин (микромашин)

Схема замещения – модель полного сопротивления фазы обмотки

Полное сопротивление фазы содержит сопротивление обмотки статора и сопротивление обмотки ротора, приведенное к числу витков и фаз обмотки статора – для каждой симметричной составляющей

При вращающемся роторе поля прямой и обратной последовательности вращаются относительно ротора с разной скоростью (разные скольжения) → они наводят в роторе ЭДС и токи разной частоты → сопротивления обмотки ротора токам прямой и обратной последовательности разные → сопротивления ротора, приведенные к обмотке статора, также разные

→ различаются полные сопротивления любой фазы токам прямой и обратной последовательности

$$Z_{A1} \neq Z_{A2} \quad Z_{B1} \neq Z_{B2}$$

Найдем скольжение ротора относительно прямого и обратного поля

- » скорость поля прямой последовательности $+n_{\rm c}$
- » скорость поля обратной последовательности $n_{\rm c}$
- » скорость вращения ротора +n
- » скорость скольжения ротора относительно прямого поля n = n n

$$n_{s1} - n_c$$
 n

» скольжение ротора относительно прямого поля

$$s_1 = \frac{n_{s1}}{n_c} = \frac{n_c - n}{n_c} = s$$

» скорость скольжения ротора относительно обратного поля

$$n_{s2} = 2n_{\rm c} - n_{s1}$$

» скольжение ротора относительно обратного поля

$$s_2 = \frac{n_{s2}}{n_c} = \frac{2n_c - n_{s1}}{n_c} = 2 - s$$

Для исследования двухфазной несимметричной машины необходимо использовать четыре схемы замещения

Если машина 1 со скольжением *s* работает в двигательном режиме, то машина 2 со скольжением 2-*s* работает в тормозном режиме

- » Для машины 1 схемы замещения фаз *A* и *B* токам прямой последовательности *I*_{A1}, *I*_{B1} будут аналогичны схеме замещения обычного (симметричного) АД при скольжении *s*
- » Для машины 2 схемы замещения фаз *A* и *B* токам обратной последовательности *I*_{A2}, *I*_{B2} будут отличаться только скольжением ротора (2-*s* вместо *s*)

» Схема замещения сопротивления фазы *А* токам прямой последовательности *Z*_{A1}

» Схема замещения сопротивления фазы *А* токам обратной последовательности *Z*_{A2}

» Схема замещения сопротивления фазы *В* токам прямой последовательности *Z*_{*B*1}

» Схема замещения сопротивления фазы *В* токам обратной последовательности *Z*_{*B*2}

Здесь

- » r_{SA} , r_{SB} активные сопротивления фаз A и B статора
- » x_{SA}, x_{SB} индуктивные сопротивления рассеяения фаз A и B статора (определяются потоками рассеяния фаз статора)
- » *r_f*, *x_f* активное и реактивное сопротивления фазосдвигающего элемента
- » x_{mA} индуктивное сопротивление взаимной индукции фазы A (определяется основным потоком)
- » *x_{mB}* индуктивное сопротивление взаимной индукции фазы *B* (определяется основным потоком)
- » *r*_{*RA*} активное сопротивление обмотки ротора, приведенное к числу фаз статора и числу витков фазы *А*
- » r_{RB} активное сопротивление обмотки ротора, приведенное к числу фаз статора и числу витков фазы *B*
- » *x*_{*RA*} индуктивное сопротивление рассеяния обмотки ротора, приведенное к числу фаз статора и числу витков фазы *A*
- » x_{RB} индуктивное сопротивление рассеяния обмотки ротора, приведенное к числу фаз статора и числу витков фазы *B*

Упрощение:

Ветви намагничивания содержат только индуктивные сопротивления – отсутствуют активные сопротивления, моделирующие потери в стали

- » Потери в стали в микромашинах незначительны
- » Учет потерь в стали нужен при расчете КПД
- » Потери в стали в микромашинах учитывают другим способом

асинхронных микродвигателей

Выражение параметров фазы *В* через параметры фазы *А* позволяет уменьшить число схем замещения → уменьшить число уравнений → упростить расчеты

Первый случай

Фазы A и B занимают одинаковое число пазов ($N_{ZA} = N_{ZB}$), имеют одинаковые коэффициенты заполнения ($k_{3A} = k_{3B}$), обмоточные коэффициенты ($k_{oA} = k_{oB}$) и равные средние длины витков ($l_{wA} = l_{wB}$), но разное число витков ($w_{\phi A} \neq w_{\phi B}$)

 $k = \frac{w_B}{w_A} = \frac{w_{\phi B} k_{oB}}{w_{\phi A} k_{oA}} = \frac{w_{\phi B}}{w_{\phi A}}$

Воспользуемся отношением чисел витков

Внимание! В разных учебниках разное определение *k* → разные формулы!

Индуктивное сопротивление обмотки $x = \omega L \sim 2\pi f w^2 \Lambda_{_{\rm M}}$

При одинаковых магнитных проводимостях по осям обмоток

$$\frac{x_{SB}}{x_{SA}} = \frac{w_B^2}{w_A^2} = k^2$$
 т.е. $\underline{x_{SB}} = k^2 x_{SA}$ аналогично $\underline{x_{mB}} = k^2 x_{mA}$

Сопротивления обмотки ротора приведены к числу витков обмотки статора,

т.е. пропорциональны *w*²

огда
$$\frac{r_{RB}}{r_{RA}} = \frac{w_B^2}{w_A^2} = k^2$$
 т.е. $\underline{r_{RB}} = k^2 r_{RA}$ аналогично $\underline{x_{RB}} = k^2 x_{RA}$

Выражение параметров фазы В через параметры фазы А позволяет уменьшить число схем замещения → уменьшить число уравнений → упростить расчеты

Первый случай

Фазы A и B занимают одинаковое число пазов ($N_{ZA} = N_{ZB}$), имеют одинаковые коэффициенты заполнения ($k_{3A} = k_{3B}$), обмоточные коэффициенты ($k_{0A} = k_{0B}$) и равные средние длины витков ($l_{wA} = l_{wB}$), но разное число витков ($w_{\Phi A} \neq w_{\Phi B}$)

Активные сопротивления обмоток статора:

Одинаковые пазы и $k_3 \rightarrow$ одинаковые площади поперечного сечения меди обмоток

Тогда при разном $w_{\rm d}$ сечения проводников фаз обратно пропорциональны числу витков в фазе

$$\frac{q_A}{q_B} = \frac{w_{\phi B}}{w_{\phi A}} = k$$
 r.e. $q_B = \frac{q_A}{k}$

При равенстве длин витков $r_{SB} = \frac{\rho l_{wB} w_{\phi B}}{q_B} = \frac{\rho l_{wA} w_{\phi A} k}{q_A / k}$ т.е. $r_{SB} = k^2 r_{SA}$ Однако, ряд диаметров обмоточных проводов дискретен $\frac{q_A}{r_B} = t \neq k$

Тогда $r_{SB} = k t r_{SA}$

Выражение параметров фазы В через параметры фазы А позволяет уменьшить число схем замещения → уменьшить число уравнений → упростить расчеты

 r_{SR}

Второй случай

Фазы A и B занимают разное число пазов ($N_{ZA} = a \cdot N_{ZB}$), но имеют одинаковые коэффициенты заполнения ($k_{3A} = k_{3B}$), т.е. одинаковое сечение меди в пазах ($Q_{\Pi A} = Q_{\Pi B}$)

При разном числе витков общая площадь поперечного сечения проводников каждой фазы

Площади поперечного сечения проводников фаз

С учетом
$$N_{ZA} = a \cdot N_{ZB}$$
 запишем $q_B = \frac{q_A k_{oB}}{k_{oA} a k}$

Тогда активное сопротивление фазы статора

При разном числе витков общая площадь
поперечного сечения проводников каждой фазы
$$Q_{A} = q_{A}w_{\phi A} = q_{A}\frac{w_{A}}{k_{oA}} = Q_{nA}N_{ZA}$$

$$Q_{B} = q_{B}w_{\phi B} = q_{B}\frac{w_{B}}{k_{oB}} = Q_{nB}N_{ZB}$$
Площади поперечного сечения проводников фаз
$$q_{A} = \frac{Q_{nA}N_{ZA}}{w_{A}/k_{oA}}$$

$$q_{B} = \frac{Q_{nB}N_{ZB}}{w_{B}/k_{oB}}$$
С учетом $N_{ZA} = a \cdot N_{ZB}$ запишем
$$q_{B} = \frac{q_{A}k_{oB}}{k_{oA}a k}$$
Число реальных витков в фазе выразим как
$$w_{\phi B} = \frac{kw_{\phi A}k_{oA}}{k_{oB}}$$
Тогда активное сопротивление фазы статора
$$r_{SB} = \frac{\rho I_{wB}w_{\phi B}}{q_{B}} = \frac{\rho I_{wA}w_{\phi A}}{q_{A}}ak^{2}\left(\frac{k_{oA}}{k_{oB}}\right)^{2}$$
т.е.
$$r_{SB} = ak^{2}\left(\frac{k_{oA}}{k_{oB}}\right)^{2}r_{SA}$$
С учетом дискретности ряда диаметров обмоточных проводов
$$\frac{q_{A}}{q_{B}} = t \neq k$$
запишем
$$r_{SB} = akt\left(\frac{k_{oA}}{k_{oB}}\right)^{2}r_{SA}$$

Выражение параметров фазы В через параметры фазы А позволяет уменьшить число схем замещения → уменьшить число уравнений → упростить расчеты

Второй случай

Фазы A и B занимают разное число пазов ($N_{ZA} = a \cdot N_{ZB}$), но имеют одинаковые коэффициенты заполнения ($k_{3A} = k_{3B}$), т.е. одинаковое сечение меди в пазах ($Q_{\Pi A} = Q_{\Pi B}$)

Индуктивное сопротивление рассеяния статора:

пропорционально *w*² и обратно пропорционально числу пазов на полюс и фазу q (т.е. N_{z})

$$\frac{x_{SB}}{x_{SA}} = \left(\frac{w_{\phi B}}{w_{\phi A}}\right)^2 \frac{N_{ZA}}{N_{ZB}} = a \left(\frac{w_B k_{oA}}{w_A k_{oB}}\right)^2 = a k^2 \left(\frac{k_{oA}}{k_{oB}}\right)^2 \quad \text{r.e.} \quad x_{SB} = a k^2 \left(\frac{k_{oA}}{k_{oB}}\right)^2 x_{SA}$$

Сопротивления фаз ротора (приведенные к числам витков фаз статора) не меняются

$$r_{RB} = k^2 r_{RA}$$
$$x_{RB} = k^2 x_{RA}$$
$$x_{mB} = k^2 x_{mA}$$

Если фазы расположены в разных пазах (по форме / по размерам), то приведение невозможно, надо учитывать сопротивления всех фаз в явном виде 57

Для упрощения расчетов два параллельных сопротивления ветви намагничивания и обмотки ротора заменяют одним *сопротивлением разветвления*

Для обратной последовательности выражения аналогичны, но вместо *s* надо использовать (2-*s*) Полное сопротивление разветвления фазы *А* для токов прямой последовательности

$$Z_{RA1} = \frac{jx_{mA}\left(\frac{r_{RA}}{s} + jx_{RA}\right)}{jx_{mA} + \left(\frac{r_{RA}}{s} + jx_{RA}\right)}$$

Его активная и реактивная составляющие

Сопротивления разветвления непостоянны, т.к. зависят от *s*! (т.е. от режима работы / нагрузки)

Использование сопротивления разветвления

Использование сопротивления разветвления

$$Z_{A1} = (r_{SA} + r_{RA1}) + j(x_{SA} + x_{RA1})$$
$$Z_{A2} = (r_{SA} + r_{RA2}) + j(x_{SA} + x_{RA2})$$
$$Z_{B1} = (r_f + r_{SB} + r_{RB1}) + j(\pm x_f + x_{SB} + x_{RB1})$$
$$Z_{B2} = (r_f + r_{SB} + r_{RB2}) + j(\pm x_f + x_{SB} + x_{RB2})$$

Знак x_f определяется характером фазосдвигающего элемента: «+x_f» для индуктивного «-x_f» для ёмкостного

Обычно удается выразить параметры фазы Bчерез параметры фазы A

Например, для первого случая, когда $N_{Z\!A} = N_{Z\!B}$, $k_{{}_{\!O\!A}} = k_{{}_{\!O\!B}}$ и t=k

$$Z_{B1} = (r_f + k^2 r_{A1}) + j(\pm x_f + k^2 x_{A1}) = Z_f + k^2 Z_{A1}$$
$$Z_{B2} = (r_f + k^2 r_{A2}) + j(\pm x_f + k^2 x_{A2}) = Z_f + k^2 Z_{A2}$$

Если же $N_{Z\!A} \neq N_{Z\!B}$ и $t \neq k$

$$Z_{B1} = \left[r_{f} + a \, k \, t \left(\frac{k_{oA}}{k_{oB}} \right)^{2} r_{SA} + k^{2} r_{RA1} \right] + j \left[\pm x_{f} + a \, k^{2} \left(\frac{k_{oA}}{k_{oB}} \right)^{2} x_{SA} + k^{2} x_{RA1} \right]$$
$$Z_{B2} = \left[r_{f} + a \, k \, t \left(\frac{k_{oA}}{k_{oB}} \right)^{2} r_{SA} + k^{2} r_{RA2} \right] + j \left[\pm x_{f} + a \, k^{2} \left(\frac{k_{oA}}{k_{oB}} \right)^{2} x_{SA} + k^{2} x_{RA2} \right]$$

Возможно формирование *совмещенной схемы замещения* Для этого параметры фазы *В* должны быть приведены к числу витков фазы *А*

$$r'_{SB} = \frac{r_{SB}}{k^2} \qquad x'_{SB} = \frac{x_{SB}}{k^2} \qquad Z'_f = \frac{Z_f}{k^2}$$
$$x'_{mB} = \frac{x_{mB}}{k^2} \qquad x'_{RB} = \frac{x_{RB}}{k^2} \qquad r'_{RB} = \frac{r_{RB}}{k^2}$$

Здесь сопротивления ветвей разветвления фазы *В* равны соответствующим параметрам фазы *А*

различаются только сопротивления обмотки статора

$$Z'_{RB} = Z_{RA} : r'_{RB} = r_{RA} \quad x'_{RB} = x_{RA} \quad x'_{mB} = x_{mA}$$
$$Z'_{SB} \neq Z_{SA}$$

В приведенной машине не только токи,

но и напряжения образуют симметричные системы векторов

$$\dot{I}'_{B1} = k\dot{I}_{B1} = j\dot{I}_{A1} \qquad \dot{I}'_{B2} = k\dot{I}_{B2} = -j\dot{I}_{A2}$$
$$\dot{U}'_{B1} = \frac{\dot{U}_{B1}}{k} = j\dot{U}_{A1} \qquad \dot{U}'_{B2} = \frac{\dot{U}_{B2}}{k} = -j\dot{U}_{A2}$$

Возможно формирование совмещенной схемы замещения

Полные сопротивления фаз для токов прямой и обратной последовательности

$$Z_{A1} = Z_{SA} + Z_{RA1} \qquad Z_{A2} = Z_{SA} + Z_{RA2}$$

$$Z_{B1} = Z'_{f} + Z'_{SB} + Z_{RA1} \qquad Z_{B2} = Z'_{f} + Z'_{SB} + Z_{RA2}$$
Уравнения равновесия напряжений фаз
$$\begin{cases} \dot{U}_{A} = \dot{U}_{A1} + \dot{U}_{A2} \\ \dot{U}'_{B} = \dot{U}'_{B1} + \dot{U}'_{B2} \end{cases}$$

$$\dot{U}_{A1} + \dot{U}_{A2} = \dot{I}_{A1}Z_{A1} + \dot{I}_{A2}Z_{A2} \\ \dot{U}'_{B} = \dot{U}'_{B1} + \dot{U}'_{B2} \end{cases}$$

$$\dot{U}_{B1}' + \dot{U}'_{B2} = \dot{I}'_{B1}Z'_{B1} + \dot{I}'_{B2}Z'_{B2} = j\dot{I}_{A1}Z'_{B1} - j\dot{I}_{A2}Z'_{B2}$$

Перепишем уравнения

$$\begin{cases} \dot{U}_{A1} + \dot{U}_{A2} = \dot{I}_{A1}Z_{A1} + \dot{I}_{A2}Z_{A2} \\ \dot{U}_{A1} - \dot{U}_{A2} = \dot{I}_{A1}Z'_{B1} - \dot{I}_{A2}Z'_{B2} \end{cases}$$

Подставим сопротивления фазы В

$$\begin{cases} \dot{U}_{A1} = \dot{I}_{A1}Z_{SA} + \dot{I}_{A1}Z_{RA1} + 0, 5(\dot{I}_{A1} - \dot{I}_{A2})(Z'_{f} + Z'_{SB} - Z_{SA}) \\ \dot{U}_{A2} = \dot{I}_{A2}Z_{SA} + \dot{I}_{A2}Z_{RA2} - 0, 5(\dot{I}_{A1} - \dot{I}_{A2})(Z'_{f} + Z'_{SB} - Z_{SA}) \end{cases}$$

Выразим составляющие напряжения

$$\begin{cases} \dot{U}_{A1} = 0,5\dot{I}_{A1}(Z_{A1} + Z'_{B1}) + 0,5\dot{I}_{A2}(Z_{A2} - Z'_{B2}) \\ \dot{U}_{A2} = 0,5\dot{I}_{A1}(Z_{A1} - Z'_{B1}) + 0,5\dot{I}_{A2}(Z_{A2} + Z'_{B2}) \end{cases}$$

Выделим общее сопротивление

$$0,5(Z'_f + Z'_{SB} - Z_{SA}) = 0,5\left(\frac{Z_f + Z_{SB}}{k^2} - Z_{SA}\right)$$
 Обозначим его Z_U

Возможно формирование совмещенной схемы замещения

С учетом общего Z_U можно уравнения записать в виде

 $\begin{cases} \dot{U}_{A1} = \dot{I}_{A1}(Z_{SA} + Z_{RA1} + Z_{U}) - \dot{I}_{A2}Z_{U} \\ \dot{U}_{A2} = \dot{I}_{A2}(Z_{SA} + Z_{RA2} + Z_{U}) - \dot{I}_{A1}Z_{U} \end{cases}$

Такой системе уравнений соответствует схема замещения В ней $\dot{U}_1 = \frac{\dot{U}_A - j\dot{U}'_B}{2}$ $\dot{U}_2 = \frac{\dot{U}_A + j\dot{U}'_B}{2}$

Из совмещенной схемы замещения легко найти токи

$$\dot{I}_{A1} = \frac{\dot{U}_1(Z_{A2} + Z_U) + \dot{U}_2 Z_U}{(Z_{A1} + Z_U)(Z_{A2} + Z_U) - Z_U^2}$$
$$\dot{I}_{A2} = \frac{\dot{U}_2(Z_{A1} + Z_U) + \dot{U}_1 Z_U}{(Z_{A1} + Z_U)(Z_{A2} + Z_U) - Z_U^2}$$

Совмещенная схема используется при математическом моделировании установившихся режимов работы несимметричных асинхронных машин

U

Электромагнитная мощность и момент несимметричного АД

Электромагнитная мощность и момент несимметричного АД

Двухфазная несимметричная асинхронная машина при n от 0 до n_c находится в режиме двигателя относительно прямовращающегося поля (s от 0 до 1) и в режиме тормоза относительно обратновращающегося поля (s_2 от 1 до 2)

Как прямая, так и обратная последовательности по-отдельности образуют круговые вращающиеся поля, при которых процессы описываются традиционными уравнениями АД

В АД электромагнитные мощности прямой последовательности $P_{\Im M1}$ и обратной последовательности $P_{\Im M2}$ поступают от статора к ротору

Полная электромагнитная мощность $P_{\Im M} = P_{\Im M1} + P_{\Im M2}$

Электромагнитная мощность и момент несимметричного АД

Согласно схеме замещения электромагнитная мощность может быть выражена через электрические потери в эквивалентном активном сопротивлении ротора

При круговом поле обе фазы статора одинаково участвуют в передаче электромагнитной мощности к ротору

$$P_{\Im M1} = P_{\Im MA1} + P_{\Im MB1} = I_{RA1}^2 \frac{r_{RA}}{s} + I_{RB1}^2 \frac{r_{RB}}{s}$$

$$P_{\Im M2} = P_{\Im MA2} + P_{\Im MB2} = I_{RA2}^2 \frac{r_{RA}}{2-s} + I_{RB2}^2 \frac{r_{RB}}{2-s}$$

Если выразить параметры фазы B $r_{RB} = k^2 r_{RA}$ и учесть $I_{RB1} = \frac{I_{RA1}}{k}$ $I_{RB2} = \frac{I_{RA2}}{k}$

можно записать электромагнитные мощности как $P_{3M1} = 2I_{RA1}^2 \frac{r_{RA}}{s}$ $P_{3M2} = 2I_{RA2}^2 \frac{r_{RA}}{2-s}$ (через токи роторной ветви)

В преобразованных схемах замещения можно выразить $P_{\ensuremath{ ext{ ЭM}}}$ через статорные токи и сопротивления разветвления

$$P_{\Im M1} = 2I_{A1}^2 r_{RA1} \quad P_{\Im M2} = 2I_{A2}^2 r_{RA2}$$

Электромагнитная мощность и момент несимметричного АД

Электромагнитный вращающий момент $M = \frac{P_{\Im M}}{O}$

При эллиптическом поле электромагнитный момент

или
$$M = \frac{2I_{A1}^2 r_{RA1}}{\Omega_c} - \frac{2I_{A2}^2 r_{RA2}}{\Omega_c}$$

Механическая характеристика несимметричного АД при эллиптическом поле также может быть представлена в виде суммы двух характеристик $M_1(s)$ и $M_2(s)$

Такой «механистический» подход не учитывает взаимного влияния полей (ослабления токов обратной последовательности полем прямой последовательности) Но лишь слегка занижает результирующий момент

$$M = \frac{P_{\Im M1}}{\Omega_{c}} + \frac{P_{\Im M2}}{-\Omega_{c}} = M_{1} + M_{2}$$

Потери мощности и энергетическая диаграмма несимметричного АД

Потери мощности и энергетическая диаграмма

Потери в стали

зависят от свойств материала (удельные потери), индукции и частоты перемагничивания

ЭДС, наводимые прямо- и обратновращающимися полями, пропорциональны соответствующим индукциям Поэтому соотношение потерь в стали определяется соотношением

При неподвижном роторе (КЗ, *s* = 1) оба поля вращаются с одинаковыми скоростями относительно статора и ротора Найденные экспериментально потери в стали при КЗ можно разделить между составляющими

$$P_{cS\kappa} = P_{cS1\kappa} + P_{cS2\kappa}$$

$$P_{cR\kappa} = P_{cR1\kappa} + P_{cR2\kappa}$$

$$P_{cS1\kappa} = \frac{P_{cS\kappa}k_{i\kappa}}{1 + k_{i\kappa}}$$

$$P_{cS2\kappa} = \frac{P_{cS\kappa}k_{i\kappa}}{1 + k_{i\kappa}}$$

$$P_{cS2\kappa} = \frac{P_{cR\kappa}k_{i\kappa}}{1 + k_{i\kappa}}$$

$$P_{cR1\kappa} = \frac{P_{cR\kappa}k_{i\kappa}}{1 + k_{i\kappa}}$$

$$P_{cR2\kappa} = \frac{P_{cR\kappa}k_{i\kappa}}{1 + k_{i\kappa}}$$

$$P_{\rm c} \sim B^2 f^{1,3}$$

$$\frac{P_{cS1}}{P_{cS2}} = \frac{P_{cR1}}{P_{cR2}} = \frac{E_{A1}^2}{E_{A2}^2}$$

Потери в стали

При вращении ротора частота перемагничивания стали статора полями прямой и обратной последовательности одинакова, а частоты перемагничивания стали ротора пропорциональны *s* и (2-*s*) соответственно

Потери в стали статора $P_{\text{est}} = P_{\text{est}} - \frac{E_{A1}^2}{E_{A1}} = P_{\text{est}} - \frac{k_{e1}^2 k_{i\kappa}}{E_{e1}^2}$ при любой скорости ротора

$$P_{cS2} = P_{cS2\kappa} \frac{E_{A1\kappa}^2}{E_{A2\kappa}^2} = P_{cS\kappa} \frac{k_{e2}^2}{1 + k_{i\kappa}}$$

$$P_{cS2} = P_{cS2\kappa} \frac{E_{A2\kappa}^2}{E_{A2\kappa}^2} = P_{cS\kappa} \frac{k_{e2}^2}{1 + k_{i\kappa}}$$

 $k^{2}k_{1}s^{1,3}$

Потери в стали ротора зависят от *s*

$$P_{cR1} = P_{cR\kappa} \frac{e_{1} r_{\kappa}}{1 + k_{i\kappa}}$$
$$P_{cR2} = P_{cR\kappa} \frac{k_{e2}^{2} (2 - s)^{1,3}}{1 + k_{i\kappa}}$$

При малых *s* можно пренебречь P_{cR1} , но не P_{cR2}

Здесь ЭДС находят по схеме замещения

 $E_{A1} = I_{A1}Z_{RA1}$ $E_{A2} = I_{A2} Z_{RA2}$

и используют их относительные значения (относительно ЭДС при КЗ) 👔

$$k_{e1} = \frac{E_{A1}}{E_{A1\kappa}}$$
$$k_{e2} = \frac{E_{A2}}{E_{A2\kappa}}$$

 \boldsymbol{L}

Потери в стали

Для учета потерь в стали традиционно вводят активное сопротивление r_m в ветвь намагничивания схемы замещения (это усложняет расчеты)

В микромашинах потери в стали малы

Их учитывают только при оценке энергетических показателей η и $\cos \phi$

Для этого рассчитывают дополнительный активный ток, потребляемый двигателем для покрытия потерь в стали (предположим, что потери покрываются поровну двумя фазами)

Дополнительные токи добавляют к токам, найденным по схеме замещения $I_{SA1} = I_{A1} + I_{A1c}$

$$I_{SA2} = I_{A2} + I_{A2c}$$
$$I_{SB1} = I_{B1} + I_{B1c}$$
$$I_{SB2} = I_{B2} + I_{B2c}$$

Токи $I_{SA1}, I_{SA2}, I_{SB1}, I_{SB2}$ используют для расчета потерь в обмотках статора и в Z_f (при расчете η) и для расчета $\cos \phi$

$$I_{A1c} = \frac{P_{cS1} + P_{cR1}}{2E_{A1}} \qquad I_{B1c} = \frac{I_{A1c}}{k}$$
$$I_{A2c} = \frac{P_{cS2} + P_{cR2}}{2E_{A2}} \qquad I_{B2c} = \frac{I_{A2c}}{k}$$

Погрешность такого подхода:

- » E_{A1} и E_{A2} определяются по схемам замещения, которые не учитывают потери в стали
- » добавочные токи оказываются заниженными
- » погрешность составляет 2-3%
Электрические потери

Потери в обмотках статора

Потери в фазосдвигающем элементе

Потери в обмотке ротора

- » учтем все составляющие тока ротора
- » если удается выразить параметры фазы *B*, через параметры фазы *A*
- » если выразить потери в роторе через электромагнитные мощности
- можно выразить потери в роторе через токи статора и сопротивления разветвления

$$P_{\Im S} = P_{\Im SA} + P_{\Im SB} = I_{SA}^2 r_{SA} + I_{SB}^2 r_{SB}$$
$$P_f = I_{SB}^2 r_f$$

$$P_{\mathfrak{R}} = P_{\mathfrak{R}1} + P_{\mathfrak{R}2} = I_{RA1}^2 r_{RA} + I_{RB1}^2 r_{RB} + I_{RA2}^2 r_{RA} + I_{RB2}^2 r_{RB}$$

$$P_{\mathfrak{R}} = P_{\mathfrak{R}1} + P_{\mathfrak{R}2} = 2I_{RA1}^2 r_{RA} + 2I_{RA2}^2 r_{RA}$$

$$P_{\mathfrak{R}} = P_{\mathfrak{M}1} \ s + P_{\mathfrak{M}2}(2-s)$$

$$P_{3R} = 2I_{A1}^2 r_{RA1} s + 2I_{A2}^2 r_{RA2} (2-s)$$

Особенность несимметричной машины

Электрические потери в роторе:

- » от прямой последовательности $P_{_{\Im R1}}$ малая доля $P_{_{\Im M1}}$ при малых s $P_{_{\Im R1}} = P_{_{\Im M1}} s$
- » от обратной последовательности $P_{_{\Im R2}}$ превышает всю $P_{_{\Im M2}}$

 $P_{\mathfrak{R}2} = P_{\mathfrak{M}2}(2-s)$

Относительно обратной последовательности ротор находится в тормозном режиме В режиме ЭМ тормоза АД превращает в тепло в роторе электрическую энергию статора ($P_{\rm 3M2}$) и механическую энергию ротора (часть $P_{\rm 3M1}$, создающей вращающий момент)

Часть $P_{\Im M1}$, которая тратится на покрытие потерь $P_{\Im R2}$ от обратной последовательности (недостающая часть $P_{\Im R2}$)

$$\Delta P_{\Im R2} = P_{\Im R2} - P_{\Im M2} = 2I_{A2}^2 r_{RA2} (2-s) - 2I_{A2}^2 r_{RA2} = 2I_{A2}^2 r_{RA2} (1-s)$$

Энергетическая диаграмма

Активная мощность, потребляемая из сети

где коэффициент мощности $\cos \varphi_A = I_{SAa} / I_{SA} \cos \varphi_B = I_{SBa} / I_{BA}$

Полная механическая мощность двухфазного несимметричного двигателя

Полезная мощность на валу (с учетом механических потерь: трение в подшипниках, вентиляционные потери)

Коэффициент полезного действия

$$P_R = P_R' - P_{\rm mex}$$

 $P_{R}' = P_{\Im M1} - P_{\Im R1} - \Delta P_{\Im R2}$

 $P_{SA} = U_A I_{SA} \cos \varphi_A$ $P_{SB} = U_B I_{SB} \cos \varphi_B$

$$\eta = \frac{P_R}{P_S} = \frac{P_R}{P_{SA} + P_{SB}}$$

Обычно не учитываются добавочные потери

- » от вытеснения тока
- » пульсационные

 $=2I_{A1}^{2}r_{RA1}-2I_{A1}^{2}r_{RA1}s-2I_{A2}^{2}r_{RA2}(1-s)=\left(2I_{A1}^{2}r_{RA1}-2I_{A2}^{2}r_{RA2}\right)\cdot(1-s)$

 » от перемагничивания стали потоками рассеяния
 Все они не более 0,5% от P_S,
 что для микромашин очень мало

Энергетическая диаграмма

Далее

Асинхронные микродвигатели общего назначения

💄 Ширинский С.В.

каф. ЭМЭЭА, НИУ «МЭИ»

- ShirinskiiSV@mpei.ru
- elmech.mpei.ac.ru/EMAU/
 (srv0-5.mpei.ac.ru/EMAU/)

