Методы анализа электрических машин

Уточнение общей теории ЭМ с помощью МЗК – гармонический анализ

> MA-05 2023

Уточнение общей теории электрических машин

Допущения общей теории электрических машин

- отсутствие насыщения
- гладкий немагнитный зазор
- синусоидальные МДС (основная гармоника)

Минимизация допущений – полевой расчет либо применение МЗК (численные модели)

Используем МЗК для уточнения общей теории в рамках аналитической модели

- учтем реальное распределение катушек по пазам
 - дискретность обмотки ступенчатая кривая МДС
- учтем одностороннюю зубчатость зазора
 - раскрытия пазов искажения поля в зазоре
 - (другой сердечник гладкий при эквивалентном зазоре $\delta k_{\delta 2}$)

Учет сложного поля в зазоре проведем с помощью метода гармонического анализа

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

3

Анализ МДС и поля в зазоре от токов обмотки в пазах сердечника начнем с элементарного – рассмотрим фазу простой обмотки с q = 1 на одном периоде поля ($Z = 2\tau$)

- одна катушечная группа на периоде
- в группе q = 1 катушек
- в катушке $w_{\rm k}$ витков
- ток фазы $i = \sqrt{2}I \cos(\omega t)$
- ток витка $i_a = i / a$
- сердечник 1 зубчатый
- сердечник 2 гладкий
- $\operatorname{sasop} \delta \to \delta'' = \delta k_{\delta 2}$
- *b*_п раскрытие паза

Например, для у = 4

Воспользуемся МЗК для анализа поля в зазоре – найдем токи пазов и токи зубцовых контуров

Токи зубцовых контуров с точностью до постоянной – *относительные* токи ЗК

пусть
$$i'_{z} = 0$$

тогда $i'_{1} = i'_{z} + i_{nz} = i_{a} W_{\kappa}$
 $i'_{2} = i'_{1} + i_{n1} = i_{a} W_{\kappa}$
 $i'_{3} = i'_{2} + i_{n2} = i_{a} W_{\kappa}$
 $i'_{y} = i'_{y-1} + i_{ny-1} = i_{a} W_{\kappa}$
 $i'_{y+1} = i'_{y} + i_{ny} = 0$
...
 $i'_{z-1} = 0$

Найдем МДС зубцового контура (запишем МДС в собственной системе координат каждого контура)

Начало координат ЗК 1 → ось ЗК 1

Начало координат ЗК 2 \rightarrow ось ЗК 2

Уравнение МДС зубцового контура

для всех ЗК в пределах катушки (для *k* от 1 до *y*)

$$F'_{k} = \begin{cases} i'_{k} = i_{a} w_{\kappa} & \text{для} - \frac{t_{z}}{2} < x_{k} < \frac{t_{z}}{2} \\ 0 & \text{для всех других } x_{k} \end{cases}$$

- ля всех ЗК за пределами катушки
- $F'_k = i'_k = 0$ для всех x_k

Найдем МДС фазы (в собственной системе координат фазы)

$$F_{\phi}' = \sum_{k=1}^{z} F_{k}' = \sum_{k=1}^{y} F_{k}'$$

Найдем точные значения токов ЗК

Постоянная составляющая токов ЗК (другой сердечник гладкий)

Тогда точные значения токов ЗК:

• для всех ЗК в пределах катушки (
$$k = 1...y$$
)

$$\Delta i = -\frac{1}{z} \sum_{k=1}^{z} i'_{k} = -\frac{yi_{a}W_{\kappa}}{z}$$

 $i = i' + \Lambda i$

$$i_{k} = i'_{k} + \Delta i = i_{a} w_{\kappa} - \frac{y i_{a} w_{\kappa}}{z} = \frac{z - y}{z} i_{a} w_{\kappa}$$
$$i_{k} = i'_{k} + \Delta i = 0 - \frac{y i_{a} w_{\kappa}}{z} = -\frac{y}{z} i_{a} w_{\kappa}$$

Точные значения МДС зубцового контура (в собственной системе координат)

$$F_{k} = \begin{cases} i'_{k} + \Delta i & \text{для} - \frac{t_{z}}{2} < x_{k} < \frac{t_{z}}{2} \\ \Delta i & \text{для всех других } x_{k} \end{cases}$$

Очевидно, можно записать $F_k = F'_k + \Delta F$ где постоянная составляющая МДС ЗК $\Delta F = \Delta i = -\frac{y}{z} i_a w_{\kappa}$

Можно найти точное значение МДС фазы (в собственной системе координат фазы)

$$F_{\phi} = \sum_{k=1}^{z} F_{k} = F_{\phi}' + \Delta F$$

Уравнение МДС фазы

$$F_{\phi} = \begin{cases} \frac{z - y}{z} i_a w_{\kappa} & \text{для} - \frac{y}{2} < x < \frac{y}{2} \\ -\frac{y}{z} i_a w_{\kappa} & \text{для всех других } y \end{cases}$$

МДС фазы – периодическая функция с периодом 2τ и четной симметрией относительно оси фазы

Для анализа периодической функции (прямоугольная волна МДС фазы) воспользуемся гармоническим анализом

Постоянная составляющая (среднее значение на периоде)

$$F_{\phi 0} = \frac{1}{2\tau} \int_{-\tau}^{\tau} F_{\phi} dx = \frac{1}{2\tau} \int_{-\tau}^{\tau} \left(F_{\phi}' + \Delta F \right) dx = 0$$

9

$$F_{\rm p} = F_{\rm p0} + \sum_{\nu=1}^{\infty} F_{\rm p\nu}$$

(точное значение МДС уже «приведено к нулю»)

Каждая гармоническая составляющая v-го порядка описывается гармонической функцией с полупериодом $\tau_v = \tau/v$

Амплитуда ν гармонической МДС фазы

$$F_{\phi\nu} = F_{\phi\nu m} \cos \frac{\pi x}{\tau_{\nu}} = F_{\phi\nu m} \cos \frac{\nu \pi x}{\tau}$$

$$F_{\phi\nu m} = \frac{1}{\tau} \int_{-\tau}^{\tau} F_{\phi} \cos \frac{\nu \pi x}{\tau} dx = \frac{1}{\tau} \int_{-\tau}^{\tau} F_{\phi}' \cos \frac{\nu \pi x}{\tau} dx + \frac{1}{\tau} \int_{-\tau}^{\tau} \Delta F \cos \frac{\nu \pi x}{\tau} dx$$
$$= F_{\phi\nu m}' + \Delta F \frac{1}{\tau} \int_{-\tau}^{\tau} \cos \frac{\nu \pi x}{\tau} dx = F_{\phi\nu m}' + 0$$

Т.е. гармоника МДС фазы совпадает с гармоникой *относительной* МДС фазы

 $F_{\phi\nu} = F'_{\phi\nu}$ (точные значения не важны, важна амплитуда)

Поскольку МДС фазы равна сумме МДС зубцовых контуров (только относительные значения)

то и v гармоника МДС фазы равна сумме v гармоник МДС этих ЗК

Гармоники прямоугольной волны МДС найти легко (в собственной системе координат – четная функция → cos)

v гармоника МДС ЗК $F'_{kv} = F'_{kvm} \cos \frac{v \pi x_k}{\tau}$

 $F_{\rm dv} = F_{\rm dv}' = \sum F_{kv}'$

Амплитуда v гармоники относительной МДС ЗК $F'_{kvm} = \frac{1}{\tau} \int_{-\tau}^{\tau} F'_k \cos \frac{v \pi x_k}{\tau} dx_k = \frac{1}{\tau} \int_{-t_z/2}^{t_z/2} (i_a w_\kappa) \cos \frac{v \pi x_k}{\tau} dx_k = 2 \frac{i_a w_\kappa}{v \pi} \sin \frac{v \pi t_z}{2 \tau}$ или $= 2 \frac{i_a w_\kappa}{v \pi} \sin \frac{v \gamma}{2}$ где $\gamma = \frac{\pi t_z}{\tau}$ – угловой размер зубцового деления t_z Это справедливо для любого ЗК внутри катушки

 $F'_{\Phi} = \sum F'_k$

МДС соседних ЗК одинаковы, но смещены в пространстве на t_z (или на эл.угол vү по v гармонике)

Суммировать пространственные гармоники проще в комплексной форме

Величина МДС контура $F = \text{Re}(\dot{F}_m)$ где \dot{F}_m – комплексная амплитуда МДС, направленная по оси контура

Тогда равенство $F_{\phi\nu} = \sum_{k=1}^{y} F'_{k\nu}$ запишем в виде $\operatorname{Re}(\dot{F}_{\phi\nu m}) = \sum_{k=1}^{y} \operatorname{Re}(\dot{F}'_{k\nu m})$ или $\operatorname{Re}(\dot{F}_{\phi\nu m}) = \operatorname{Re}\left(\sum_{k=1}^{y} \dot{F}'_{k\nu m}\right)$

Получим векторное равенство

$$\ddot{F}_{\phi\nu m} = \sum_{k=1}^{y} \dot{F}'_{k\nu m}$$

Построим векторное равенство $\dot{F}_{\phi vm} = \sum_{k=1}^{y} \dot{F}'_{kvm}$ и найдем величину МДС фазы $\operatorname{Re}(\dot{F}_{\phi vm})$

МДС зубцовых контуров \dot{F}'_{kvm} – одинаковые векторы, сдвинутые на угол vy

Сумма векторов

Вектора МДС зубцовых контуров вписаны в окружность радиусом *R*

Построим срединные перпендикуляры ОВ и ОС

Рассмотрим треугольник ОВА

$$|AB| = R \sin \frac{v\gamma}{2} \rightarrow F'_{kvm} = \operatorname{Re}\left(\dot{F}'_{kvm}\right) = 2R \sin \frac{v\gamma}{2}$$

Рассмотрим треугольник ОСО

$$|CD| = R \sin \frac{y \vee \gamma}{2} \rightarrow F_{\phi \vee m} = \operatorname{Re}(\dot{F}_{\phi \vee m}) = 2R \sin \frac{y \vee \gamma}{2}$$

Выразив *R*, запишем равенство

$$F_{\phi\nu m}\sin\frac{\nu\gamma}{2} = F'_{k\nu m}\sin\frac{y\nu\gamma}{2}$$

Подставим амплитуду v гармоники МДС ЗК $F_{\phi v m} \sin \frac{v \gamma}{2} = \left(2 \frac{i_a w_{\kappa}}{v \pi} \sin \frac{v \gamma}{2}\right) \sin \frac{y v \gamma}{2}$

Получим выражение для v гармоники МДС фазы

Амплитуда v гармоники МДС фазы

$$F_{\phi\nu m} = 2\frac{\dot{i}_a w_{\kappa}}{\nu \pi} \sin \frac{y \nu \gamma}{2}$$

14

или
$$F_{\phi \nu m} = 2 \frac{i_a W_\kappa}{\nu \pi} k_{yv}$$

где k_{vv} – обмоточный коэффициент укорочения по v гармонике

Удобно выразить величины в зубцовых делениях: если $t_{\tau} = 1$, то $2\tau = m'q$ (для простой обмотки)

$$k_{yv} = \sin \frac{yv\gamma}{2} = \sin \frac{yv\pi t_z}{2\tau}$$
$$k_{yv} = \sin \frac{yv\pi}{m'a}$$

 $|k_{vv}| = 1$ Для обмотки с диаметральным шагом ($y = \tau$) для всех нечетных v

и амплитуда v гармоники МДС фазы $F_{\phi vm}\Big|_{y=\tau} = 2 \frac{\dot{l}_a W_{\kappa}}{v \pi}$

Тогда коэффициент укорочения $k_{yv} = \frac{F_{\phi vm}}{F_{\phi vm}}\Big|_{y=\tau}$ При укорочении шага обмотки $k_{yv} < 1$ даже для основной гармоники

МДС фазы $F_{\phi} = F'_{\phi} + \Delta F$ создает магнитное поле в зазоре ЭМ с индукцией $B_{\phi} = B'_{\phi} + B_{\Delta}$ B'_{ϕ} – индукция магнитного поля, созданного МДС F'_{ϕ} B_{Δ} – индукция магнитного поля, созданного МДС ΔF

Рассмотрим гармоники индукции магнитного поля $B_{\phi} = \sum_{\nu=1}^{\infty} B_{\phi\nu}$ вида $B_{\phi\nu} = B_{\phi\nu m} \cos \frac{\nu \pi x}{\tau}$ (постоянная составляющая индукции $B_{\phi0} = 0$ в силу непрерывности линий магнитного поля)

Амплитуда v гармоники индукции магнитного поля фазы

$$B_{\phi\nu m} = \frac{1}{\tau} \int_{-\tau}^{\tau} B_{\phi} \cos \frac{\nu \pi x}{\tau} dx = \frac{1}{\tau} \int_{-\tau}^{\tau} B_{\phi}' \cos \frac{\nu \pi x}{\tau} dx + \frac{1}{\tau} \int_{-\tau}^{\tau} B_{\Delta} \cos \frac{\nu \pi x}{\tau} dx$$

При постоянном значении ΔF на зубцовом делении B_{Δ} меняется из-за раскрытия паза, но форма индукции повторяется на каждом t_z Т.к. B_{Δ} укладывается на периоде целое число раз $(2\tau/t_z = z)$, то $\frac{1}{\tau} \int_{-\tau}^{\tau} B_{\Delta} \cos \frac{\nu \pi x}{\tau} dx = 0$

Гармоника индукции определяется только B'_{ϕ} , т.е. создается только относительной МДС фазы F'_{ϕ}

При этом *В* '_ф можно представить суммой индукций поля от МДС отдельных зубцовых контуров

Форма кривой индукции поля ЗК определяется геометрией $(t_z, b_{\Pi} \text{ и } \delta)$

16

X_k

(поле в зазоре под пазом равно сумме нечетного поля от тока в пазу и четного поля от тока соседнего паза)

$$B_k' = B_s(x) + B_c(x)$$

 $B'_{\phi} = \sum_{k=1}^{y} B'_{k}$

Рассчитав кривую индукции поля ЗК, можно разложить ее на гармоники чтобы просуммировать гармоники зубцовых контуров

▲ось фазы

X

Можно найти кривую индукции ЗК и разложить ее на гармоники – как правило, это можно сделать только численно

В инженерной практике для расчета гармоник индукции ЗК используют методику Т.Г. Сорокера

Прямоугольная МДС *k* зубцового контура (на рисунке – φ_k) создает реальную кривую индукции B_k , с гармониками B_{kv} (B_{kvm} и τ_v)

Если предположить идеализированную кривую индукции B_{k0} , (пусть ее ширина равна t_z , как у МДС, а амплитуда $B_{k0} = \mu_0 F_k / \delta$), то ее v гармоники B_{k0v} будут иметь то же τ_v и другую амплитуду B_{k0vm} Гармоники прямоугольной волны B_{k0} легко найти

$$B_{k0\nu m} = rac{\mu_0 F_{k\nu m}}{\delta}$$
 где $F_{k\nu m} = 2rac{\dot{i}_a W_\kappa}{\nu \pi} k_{y\nu}$

Но они не совпадают с гармониками B_k из-за влияния пазов

$$v = \frac{B_{kvm}}{B_{k0vm}}$$
 – коэффициент пазовости для v гармоники
(коэффициент влияния пазов)

Коэффициент C_v одинаков для всех t_z Величина C_v определяется геометрией зазора и v

$$C_{\nu} = f\left(rac{b_{\pi}}{\delta''}; rac{b_{\pi}}{t_z}; rac{Z}{
u p}
ight)$$
Для $\nu = 1$ $C_1 \approx rac{1}{k_{\delta 1}}$

Инженерный подход: рассчитав *С*_v находят гармоники реальной индукции через гармоники идеализированной индукции

$$B_{k\nu m} = B_{k0\nu m} C_{\nu} = \frac{\mu_0 F_{k\nu m}}{\delta} C_{\nu}$$

18

Коэффициент пазовости C_{v} :

- по таблицам (номограммам) заранее рассчитанных значений в книгах по проектированию ЭМ
- по приближенной методике расчета в учебнике
 Иванова-Смоленского А.В. Электрические машины. Том 1. с.321

Итак, можем найти гармоники индукции поля от относительных МДС зубцовых контуров

$$B_{k\nu m}' = \frac{\mu_0 F_{k\nu m}'}{\delta} C_{\nu}$$

Гармонику поля фазы найдем как сумму v гармоник полей зубцовых контуров

$$B_{\phi\nu} = B_{\phi\nu m} \cos \frac{\nu \pi x}{\tau} = \sum_{k=1}^{y} B'_{k\nu m} \cos \frac{\nu \pi x_{k}}{\tau}$$

Поскольку оси ЗК сдвинуты в пространстве на vy, используем векторную сумму комплексных амплитуд $\dot{B}_{\phi vm} = \sum_{k=1}^{y} \dot{B}'_{kvm}$ Комплексная амплитуда v гармоники поля k зубцового контура $\dot{B}'_{kvm} = \frac{\mu_0 \dot{F}'_{kvm}}{\delta} C_v$ Тогда $\dot{B}_{\phi vm} = \sum_{k=1}^{y} \frac{\mu_0 \dot{F}'_{kvm}}{\delta} C_v = \frac{\mu_0}{\delta} C_v \sum_{k=1}^{y} \dot{F}'_{kvm} = \frac{\mu_0}{\delta} C_v \dot{F}_{\phi vm}$ Т.о. амплитуда v гармоники поля фазы $B_{\phi vm} = \frac{\mu_0 F_{\phi vm}}{\delta} C_v = \frac{2(i_a w_\kappa) k_{yv} \mu_0 C_v}{v \pi \delta}$ Просуммировав все гармоники, получим кривую индукции полного поля фазы $B_{\phi} = \sum_{k=1}^{\infty} B_{\phi v}$

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

20

Рассмотрим фазу простой многофазной двухслойной обмотки, имеющей *q* катушек в катушечной группе Представим ее как совокупность *q* элементарных фаз, имеющих *q* = 1, одинаковый шаг *y* и смещенных на *t*_z Каждая элементарная фаза *n* создает МДС F_{ϕ}^{n} Полная МДС фазы $F_{\phi} = F_{\phi}^{1} + F_{\phi}^{2} + F_{\phi}^{3} = \sum_{n=1}^{q} F_{\phi}^{n}$ Каждая МДС F_{ϕ}^{n} раскладывается на гармоники $F_{\phi v}^{n} = F_{\phi vm}^{n} \cos \frac{v \pi x_{n}}{\tau}$

Гармоника МДС фазы может быть собрана из гармоник элементарных фаз

$$F_{\phi\nu} = F_{\phi\nu m} \cos \frac{\nu \pi x}{\tau} = \sum_{n=1}^{q} F_{\phi\nu}^{n}$$

Все v гармоники МДС элементарных фаз одинаковы, но смещены в пространстве на t_z (или на эл.угол vγ по v гармонике)

 $\sin \frac{qv\gamma}{dv}$

21

Для правильного суммирования v гармоник МДС элементарных фаз воспользуемся векторной суммой их комплексных амплитуд

$$\dot{F}_{\rm pvm} = \sum_{n=1}^{q} \dot{F}_{\rm pvm}^{n}$$

Впишем вектора в окружность радиусом RИз треугольника 012: $F_{\phi vm}^n = 2R \sin \frac{v\gamma}{2}$ Из треугольника 034: $F_{\phi vm} = 2R \sin \frac{qv\gamma}{2}$ Тогда $F_{\phi vm} \sin \frac{v\gamma}{2} = F_{\phi vm}^n \sin \frac{qv\gamma}{2}$ Т.о. амплитуда v гармоники МДС фазы $F_{\phi vm} = F_{\phi vm}^n$

Перепишем амплитуду v гармоники МДС фазы

$$F_{\phi\nu m} = F_{\phi\nu m}^{n} \frac{\sin \frac{q\nu\gamma}{2}}{\sin \frac{\nu\gamma}{2}} = F_{\phi\nu m}^{n} q \frac{\sin \frac{q\nu\gamma}{2}}{q\sin \frac{\nu\gamma}{2}} = F_{\phi\nu m}^{n} q k_{p\nu}$$

где k_{pv} – обмоточный коэффициент распределения по v гармонике

$$k_{pv} = \frac{\sin \frac{qv\gamma}{2}}{q\sin \frac{v\gamma}{2}}$$
 или в зубцовых $k_{pv} = \frac{\sin \frac{qv\pi t_z}{2\tau}}{q\sin \frac{v\pi t_z}{2\tau}}$ простой $k_{pv} = \frac{\sin \frac{qv\pi t_z}{m'q}}{q\sin \frac{v\pi t_z}{m'q}} = \frac{\sin \frac{v\pi t_z}{m'}}{q\sin \frac{v\pi t_z}{m'q}}$

22

Коэффициент распределения $k_{pv} = \frac{F_{\phi vm}}{qF_{\phi vm}^n}$ показывает уменьшение МДС фазы по сравнению с алгебраической суммой МДС элементарных фаз

При распределении обмотки по пазам $k_{\rm pv} < 1$ даже для основной гармоники

Итак, амплитуда v гармоники МДС фазы обмотки с произвольным q

$$F_{\phi\nu m} = F_{\phi\nu m}^{n} q k_{p\nu} = \frac{2(i_{a}w_{\kappa})k_{y\nu}}{\nu\pi} q k_{p\nu}$$

Заметим, что число витков в фазе простой обмотки
$$w' = \frac{w_{\kappa}qp}{a}$$

тогда $w_{\kappa} = \frac{aw'}{qp}$ и выражение можно переписать $F_{\phi\nu m} = \frac{2(i_a a)w'}{\nu \pi p} k_{y\nu} k_{p\nu}$
Т.к. $i_a = i / a$, амплитуда v гармоники МДС фазы запишется как $F_{\phi\nu m} = \frac{2iw'}{\nu \pi p} k_{y\nu} k_{p\nu}$

Теперь для любой простой обмотки с произвольным q можно определить:

Полная МДС фазы
$$F_{\phi} = \sum_{\nu=1}^{\infty} F_{\phi\nu m} \cos \frac{\nu \pi x}{\tau}$$

Индукция магнитного поля фазы $B_{\phi} = \sum_{\nu=1}^{\infty} B_{\phi\nu m} \cos \frac{\nu \pi x}{\tau} = \sum_{\nu=1}^{\infty} \frac{\mu_0 F_{\phi\nu m} C_{\nu}}{\delta} \cos \frac{\nu \pi x}{\tau}$

23

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

24

Выражения для гармоник МДС и индукции во вращающихся машинах удобно записать через угловые координаты

Например, v гармоника МДС фазы $F_{\phi v} = F_{\phi vm} \cos \frac{v \pi x}{m}$ На средней линии зазора $x = \alpha R$, $2\pi R = 2p\tau \rightarrow \tau = \frac{2\pi R}{2}$ 2pось фазы Тогда $\cos \frac{\nu \pi x}{\tau} = \cos \left(\frac{\nu \pi \alpha R}{2 \pi R} 2 p \right)$ При этом амплитуда v гармоники МДС фазы

 $= \cos \nu p \alpha = \cos \nu \alpha_1$

$$F_{\phi \nu m} = \frac{2iw'}{\nu \pi p} k_{y\nu} k_{p\nu}$$

Здесь *і* – мгновенное значение тока фазы

τ

R

Итак, v гармоника МДС фазы записывается как

Это уравнение пульсирующей волны

- при изменении тока изменяется величина МДС, но пространственное распределение сохраняется
- ось волны МДС неподвижна в пространстве (совпадает с осью фазы)

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

Амплитуды волн равны $F_{\phi\nu m}^{np} = F_{\phi\nu m}^{obp} = \frac{1}{2} F_{\phi\nu m}$ Пространственное распределение волны относительно оси МДС неизменно (cos) → неизменная волна вращается в пространстве

26

с угловой скоростью $\Omega_{v}^{np} = \omega / vp$ Ось обратной МДС вращается в сторону «-» углов с угловой скоростью $\Omega_v^{obp} = -\omega / vp$

Здесь $F_{dv}^{np}(\alpha, t)$ – прямо-вращающаяся волна МДС

 $F_{\mathrm{dv}}^{\mathrm{obp}}(\alpha,t)$ – обратно-вращающаяся волна МДС

$$F_{\phi\nu}(\alpha,t) = F_{\phi\nu m} \cos \omega t \cdot \cos \nu p \alpha = \frac{1}{2} F_{\phi\nu m} \cos \left(\omega t - \nu p \alpha\right) + \frac{1}{2} F_{\phi\nu m} \cos \left(\omega t + \nu p \alpha\right) = F_{\phi\nu}^{\pi p}(\alpha,t) + F_{\phi\nu}^{\sigma \delta p}(\alpha,t)$$

Выражение для пульсирующей волны МДС можно переписать так

Гармоника как волна

При t = 0 обе волны совпадают в пространстве с осью фазы Их сумма дает максимальную пульсирующую волну МДС

С течением времени волны движутся
в противоположные стороны
с одинаковыми скоростями → их сумма
всегда дает соѕ с максимумом на оси фазы

27

При $\omega t = \pi/2$ волны находятся в противофазе, их сумма = 0

Угловая скорость в электрических град.

$$\omega_{v}^{np} = \Omega_{v}^{np} p = \frac{\omega_{1}}{v} \qquad \omega_{v}^{obp} = \Omega_{v}^{obp} p = -\frac{\omega_{1}}{v}$$

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

Разложение пульсирующей волны МДС на прямую и обратные волны

$$F_{\phi\nu} = \frac{1}{2} F_{\phi\nu m} \cos\left(\omega t - \nu p\alpha\right) + \frac{1}{2} F_{\phi\nu m} \cos\left(\omega t + \nu p\alpha\right)$$

28

 $F_{\phi\nu}$

Разложение пульсирующей волны МДС на прямую и обратные волны

$$F_{\phi\nu} = \frac{1}{2} F_{\phi\nu m} \cos\left(\omega t - \nu p\alpha\right) + \frac{1}{2} F_{\phi\nu m} \cos\left(\omega t + \nu p\alpha\right)$$

Прямо-вращающаяся волна МДС фазы $F_{\phi\nu}^{np}(\alpha, t) = \frac{1}{2} F_{\phi\nu m} \cos(\omega t - \nu p \alpha)$ Обратно-вр волна МДС

Обратно-вращающаяся $F_{\phi\nu}^{obp}(\alpha, t) = \frac{1}{2} F_{\phi\nu m} \cos(\omega t + \nu p \alpha)$

Если принять, что для прямой волны v положительно, а для обратной волны v отрицательно, то обе волны можно описать одним уравнением

$$F_{\phi\nu}^{\text{вр}}(\alpha,t) = \frac{1}{2} F_{\phi\nu m} \cos(\omega t - \nu p \alpha) \quad \text{где } \nu = -\infty...-2; -1; 0; +1; +2...+\infty \qquad \text{Угловая скорость} \quad \Omega_{\nu} = \frac{\omega}{\nu p}$$

29

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

30

Рассмотрим простую многофазную двухполюсную обмотку с числом фаз m', питаемую симметричной системой токов $i_n = \sqrt{2}I \cos \omega t_n$

Например, m' = 6, q = 2 и p = 1

Число зубцов на периоде z = pm'q = 12, полюсное деление $\tau = m'q / 2 = 6$

Угловой размер зубцового деления $\gamma = \frac{2\pi}{7}$

Угол сдвига между соседними фазами
$$\gamma_{nn+1} = \frac{2\pi}{pm'} = \frac{2\pi}{6}$$

Для каждой фазы *n* известны гармоники МДС (и поля) в системе координат фазы *n*

$$F_{n\nu}^{\rm BP} = \frac{1}{2} F_{\phi\nu m} \cos\left(\omega t_n - \nu p\alpha_n\right)$$

Надо просуммировать МДС всех фаз, приведя к единой системе координат

Расположение фаз в пространственной плоскости (относительно фазы 0)

Рассматриваем электрические углы (для p = 1) Угловое положение точки A в системе координат фазы $n \to \alpha_{1n}$ (пусть n = 2)

> (первый индекс 1 – эл.угол по 1 гармонике, второй индекс *n* – номер фазы)

Угловое положение точки A в системе координат фазы $0 \to \alpha_{10}$

Угол между фазами 0 и $n = \frac{2\pi}{m'}n$

Приведем координату α_{1n} к системе координат фазы 0

$$\alpha_{1n} = \alpha_{10} - \frac{2\pi}{m'}n$$

31

Расположение фаз во временной плоскости (относительно фазы 0)

Обеспечим правильное чередование фаз для прямой волны (относительно неподвижной оси времени *t*)

Мгновенное значение фазного тока \rightarrow проекция вектора фазного тока на ось времени t $i_n = \sqrt{2I} \cos \omega t_n$ здесь t_n – временная координата фазы n

Фаза тока *n* в системе координат фазы *n* ωt_n (относительно момента времени, когда ток фазы *n* максимален)

Фаза тока 0 в системе координат фазы 0 ωt_0 (относительно момента времени, когда ток фазы 0 максимален)

Приведем фазу тока *n* к системе координат фазы 0

$$\omega t_n = \omega t_0 - \frac{2\pi}{m'} n$$

32

Приведем гармоники каждой фазы *n* к системе координат фазы 0

$$F_{n\nu}^{\rm BP} = \frac{1}{2} F_{\phi\nu m} \cos\left(\omega t_n - \nu \alpha_{1n}\right)$$

33

$$F_{n\nu}^{\rm BP} = \frac{1}{2} F_{\phi\nu m} \cos\left(\left(\omega t_0 - \frac{2\pi}{m'}n\right) - \nu\left(\alpha_{10} - \frac{2\pi}{m'}n\right)\right)$$

Полная МДС всей обмотки по v гармонике равна сумме v гармоник МДС всех фаз

$$F_{\nu} = \sum_{n=0}^{m'-1} F_{n\nu}^{\text{sp}} = \sum_{n=0}^{m'-1} \frac{1}{2} F_{\phi\nu m} \cos\left(\left(\omega t_0 - \frac{2\pi}{m'}n\right) - \nu\left(\alpha_{10} - \frac{2\pi}{m'}n\right)\right)$$
$$= \frac{1}{2} F_{\phi\nu m} \sum_{n=0}^{m'-1} \cos\left(\omega t_0 - \nu\alpha_{10} - \frac{2\pi}{m'}n(1-\nu)\right)$$

Или в комплексной форме
– векторная сумма

$$\dot{F}_{\nu m} = \sum_{n=0}^{m'-1} \dot{F}_{n\nu m}^{\text{вр}}$$

Для разных гармоник v аргументы cos оказываются разными за счет слагаемого

$$\frac{2\pi}{m'}n(1-v)$$

Рассмотрим возможные варианты

Вариант 1: пусть v таково, что
$$\frac{2\pi}{m'}n(1-v) = 2\pi \times (\text{целое число})$$
T.e.
$$\frac{(1-v)}{m'} = (\text{целое число})$$
или $v = 1+m' \times (\text{целое число})$
Torда в силу периодичности соs:
$$\cos\left(\omega t_0 - v\alpha_{10} - \frac{2\pi}{m'}n(1-v)\right) = \cos\left(\omega t_0 - v\alpha_{10}\right)$$
Это справедливо для любой фазы n
T.e. все такие v гармоники всех фаз совпадают в пространстве и всктор v гармоники MДС простой многофазной обмотки равен простой сумме векторов v гармоник MДС всех фаз
Результирующая МДС обмотки $F_v = m' \frac{F_{\phi vm}}{2} \cos\left(\omega t_0 - v\alpha_{10}\right) = F_{vm} \cos\left(\omega t - v\alpha_1\right)$
Гле $F_{vm} = \frac{\sqrt{2m'Iw'k_{yv}k_{pv}}}{\sqrt{\pi p}}$
Например, для обмотки с $m' = 6$
для всех $v = 1+m' \times (\text{целое число})$
(т.е. $v = 1; -5; +7; -11; +13...)$
 $\dot{F}_{vm} = \sum_{n=0}^{n'-1} \dot{F}_{nvm}^{np} = 6 \cdot \dot{F}_{nvm}^{np}$
 \dot{F}_{4vm}^{pp}
 \dot{F}_{3vm}^{pp}
 \dot{F}_{3vm}^{pp}
 \dot{F}_{3vm}^{pp}
 $\dot{F}_{vm} = \sum_{n=0}^{n'-1} \dot{F}_{nvm}^{np} = 13 \cdot \dot{F}_{nvm}^{np}$

Вариант 2: пусть v таково, что $\frac{2\pi}{m'}n(1-v) \neq 2\pi \times ($ целое число) Т.е. $v \neq 1 + m' \times ($ целое число)

35

Тогда векторы МДС соседних фаз *n* и *n*+1 расположены под углом $\alpha_{nn+1\nu} = \frac{2\pi}{m'} (n+1)(1-\nu) - \frac{2\pi}{m'} n(1-\nu) = \frac{2\pi}{m'} (1-\nu)$

и векторы v гармоник МДС всех фаз образуют симметричную звезду векторов

 $(1-v) = \frac{1}{m'}(1-v)$ между любыми парами соседних фаз)

Сумма векторов которой всегда равна 0

(одинаковый угол

Например, для обмотки с m' = 6 $\nu \neq 1 + m' \times ($ целое число) соответствует $\nu = -1; \pm 2; \pm 3; \pm 4; \pm 5; -7; \pm 8...$

Этот угол кратен углу сдвига между фазами

Т.е. гармоники порядка v ≠ 1+ m'×(целое число) простой многофазной обмоткой не создаются!

Итак, простая многофазная обмотка создает гармоники МДС $F_{v} = F_{vm} \cos(\omega t - vp\alpha)$ порядка $v = 1 + m' \times (целое число)$

где амплитуда v гармоники результирующей МДС

$$F_{vm} = \frac{\sqrt{2}m' I w' k_{yv} k_{pv}}{v \pi p}$$

Эти гармоники вращаются с угловой скоростью $\Omega_v = \frac{\omega}{vp}$ (направление вращения определяется знаком v)

$$B_{v} = B_{vm} \cos\left(\omega t - vp\alpha\right)$$

Каждая гармоника МДС создает соответствующую гармонику индукции результирующего магнитного поля

где амплитуда v гармоники индукции

$$B_{vm} = \frac{\mu_0 F_{vm} C_v}{\delta}$$

Полная МДС простой обмотки $F = \sum F_{v}$

Кривая индукции результирующего поля $B = \sum B_{v}$
Сложная многофазная обмотка

Сложная многофазная обмотка имеет на каждом периоде по две катушечные группы, соединенные встречно

Сложная многофазная обмотка с числом фаз *m* может быть представлена *эквивалентной* простой обмоткой с числом фаз m' = 2m, имеющей такие же катушки: q' = q, $w'_{\kappa} = w_{\kappa}$, p' = p, a' = a, y' = y

Сложная многофазная обмотка

Фаза сложной обмотки (две катушечные группы, включенные встречно) образована из двух фаз эквивалентной простой обмотки (по одной катушечной группе в каждой), смещенных на π

Одна из фаз эквивалентной простой обмотки питается тем же током, что и фаза сложной обмотки, а другая – током, смещенным на π (как и во встречено включенной катушечной группе)

 $\dot{I}_1 = -\dot{I}_C$

 $\dot{I}_2 = \dot{I}_R$

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

Сложная многофазная обмотка

Если для сложной обмотки существует эквивалентная простая, то сложная обмотка создает такие же гармоники МДС и поля, что и эквивалентная простая обмотка

$$F_{\nu}|_{\text{сложная}} = F_{\nu}|_{\text{простая}} = F_{\nu m} \cos(\omega t - \nu p\alpha)$$

где амплитуда МДС
$$F_{\nu m} = \frac{\sqrt{2}m' I w' k_{y\nu} k_{p\nu}}{\nu \pi p} \begin{bmatrix} m' = 2m \\ w' = w/2 \end{bmatrix} F_{\nu m} = \frac{\sqrt{2}m I w k_{y\nu} k_{p\nu}}{\nu \pi p}$$

Гармонический состав сложной обмотки

 $v = 1 + m' \times ($ целое число $) \rightarrow v = 1 + 2m \times ($ целое число)

Сложная обмотка создает только нечетные гармоники!

Например, гармоники сложной обмотки сm = 3 v = 1; -5; +7; -11; +13...

гармоники сложной обмотки с m = 2 v = 1; -3; +5; -7; +9...

гармоники простой обмотки с m' = 3 v = 1; -2; +4; -5; +7...

Классификация высших гармонических

Обмоточные коэффициенты различаются для разных v — порядок гармоники входит в формулу k_{yv} и k_{pv} Существует закономерность в значениях обмоточных коэффициентов для разных v Представим номер гармоники $v = 1 + 2m \times ($ целое число) в виде v = 1 + 2m(j + qs)где j = 0; 1; 2...q-1, s – целое число $(0; \pm 1; \pm 2...\pm \infty)$ Тогда коэффициент укорочения $k_{yv} = \sin\frac{v\pi y}{2\tau} = \sin\frac{v\pi y}{2mq} = \sin\frac{(1+2mj+2mqs)\pi y}{2mq} = \sin\frac{(1+2mj)\pi y+2mqs\pi y}{2mq} = \sin\frac{(1+2mj)\pi y}{2mq} = \sin\frac{(1+2mj)\pi y}{2mq}$ (по модулю) т.к. $\frac{2mqs \cdot \pi y}{2mq}$ равно целому числу π Аналогично, коэффициент распределения $k_{\rm pv} = \frac{\sin\frac{\nu\pi}{2m}}{q\sin\frac{\nu\pi}{2mq}} = \frac{\sin\frac{\pi(1+2mj+2mqs)}{2m}}{q\sin\frac{\pi(1+2mj+2mqs)}{2mq}} = \frac{\sin\frac{\pi}{2m}}{q\sin\frac{\pi(1+2mj)}{2mq}} \quad (\text{по модулю})$ Обмоточные коэффициенты не зависят от *s*, но различаются для разных ј Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

Классификация высших гармонических

С учетом значений обмоточных коэффициентов различают первоначальные и сопутствующие гармоники

Первоначальные гармоники – гармоники порядка $v_{j0} = 1 + 2mj$, где j = 0; 1; 2...q-1, s = 0

Например, лля обмотки с		v_{j0}	$k_{\rm ov} = k_{\rm yv} \cdot k_{\rm pv}$
m = 3, q = 3, y = 7	0	$v_{00} = 1 + 6 \cdot 0 = 1$	$k_{01} = 0,92$
Тервоначальные гармоники могут иметь	1	$v_{10} = 1 + 6 \cdot 1 = 7$	$k_{07} = 0,138$
разные обмоточные коэффициенты		$v_{20} = 1 + 6 \cdot 2 = 13$	$k_{013} = 0,039$

Сопутствующие гармоники – гармоники порядка $v_{jS} = v_{j0} + 2mqs$, где $s = \pm 1; \pm 2... \pm \infty$

для обмотки с <i>m</i> = 3, <i>q</i> = 3, <i>y</i> = 7	j	$ u_{j0}$	$k_{ m ov}$	Сопутствующие гармоники
	0	$v_{00} = 1$	$k_{01} = 0,92$	-17 +19 -35 +37
Сопутствующие гармоники имеют такие же обмоточные коэффициенты, как и	1	$v_{10} = 7$	$k_{07} = 0,138$	-11 +25 -29 +43
	2	$v_{20} = 13$	$k_{013} = 0,039$	-5 +31 -23 +49
гармоника, которой они сопутствуют				

Зубцовые гармоники

Высшие гармоники, сопутствующие основной гармонике

-зубцовые гармоники: $v_z = v_{0s}$, где j = 0, $s = \pm 1$; $\pm 2... \pm \infty$

Название «зубцовые» связано с зубчатостью ЭМ Число пар полюсов зубцовой гармоники: $p_z = pv_z = p(1+2mqs) = p + 2pmq \cdot s = p + z \cdot s$

Зубцовые гармоники имеют такой же большой обмоточный коэффициент, что и основная гармоника

Именно они вносят заметные искажения в синусоидальную МДС обмотки

→ их необходимо учитывать в расчетах

Особенно это актуально для ЭМ с малыми q– чем меньше v_{z} , тем больше амплитуда МДС F_{vz}

Для подавления зубцовых обмоток применяют скос пазов

Зубцовые гармоники

 $\gamma_{\rm cv} = \frac{b_{\rm c}\pi}{\tau} = \frac{b_{\rm c}\pi\nu}{\tau}$

Скос пазов характеризуется величиной скоса $b_{\rm c}$ – расстояние по окружности сердечника между началом и концом проводника γ_{cv} – угол скоса по v гармонике

> В каждом поперечном сечении МДС зубцового контура остается прямоугольной с шириной t_z но ее результирующее действие на всей длине сердечника

эквивалентно трапецеидальной форме МДС

Представив проводник суммой отрезков, сдвинутых в пространстве, получим формулу для гармоники результирующей МДС ЗК $F_{k\nu mc} = F_{k\nu m} k_{c\nu}$ где коэффициент скоса $k_{cv} = \frac{\sin(\gamma_{cv}/2)}{\gamma_{cv}/2} = \frac{\sin(b_c \pi v/2\tau)}{b_c \pi v/2\tau}$

Обычно выполняют скос на 1 зубцовое деление

Например, для обмотки с m = 3, q = 3, y = 7 при $b_c = t_{z1}$ $\gamma_c = \frac{b_c \pi v}{\tau} = \frac{1 \cdot \pi v}{mq}$ $k_{cv} = \frac{\sin(\pi v / 2mq)}{\pi v / 2mq}$ Для v = 1 $k_c = 0,995$ для v = -17 $k_c = 0,058$ для v = 19 $k_c = 0,057$

43

Xk

Магнитное поле обмотки якоря

Результирующее магнитное поле в зазоре, созданное sin токами якоря, не только движется, но и изменяет свою форму с течением времени

Это видно и на гармониках

Гармоники поля вращаются с разными геометрическими угловыми скоростями $\Omega_v = \frac{\omega}{p_v} = \frac{\Omega_1}{v}$ Но одинаковыми электрическими $\omega_v = \Omega_v p_v = \omega$ Пусть $B = B_1 + B_5$ При $t = \pi / 2\omega$ волна B_1 сдвинется на угол $\Omega_1 t = \frac{\omega}{p} \frac{\pi}{2\omega} = \frac{\pi}{2p}$ А волна B_5 сдвинется на $\Omega_5 t = \frac{\omega}{5p} \frac{\pi}{2\omega} = \frac{\pi}{2(5p)}$ Форма результирующей *B* изменится

Магнитное поле обмотки возбуждения

 $B_{\nu m} = k_{f\nu} B_m$

где $B_m = \frac{\mu_0 F_m}{\delta}$

Обмотки возбуждения питаются постоянным током и создают постоянное магнитное поле Обмотки вращаются вместе с ротором и так же вращается поле возбуждения Порядок рассмотрения МДС и индукции поля ОВ аналогичен обмоткам переменного тока: катушки с *iw*_к → волна МДС → гармоники МДС → гармоники поля

Поле возбуждения явнополюсной СМ – сложная форма поля даже при гладком якоре (можно рассчитать только численно)

Инженерный подход – аналогично методике Т.Г. Сорокера:

Расчет гармоник реальной индукции через гармоники идеализированной кривой B(x)и коэффициенты поля возбуждения k_{fv} (из таблиц в зависимости от $\alpha = b_p / \tau, \gamma = \delta_m / \delta, \epsilon = \delta / \tau$) Затем $B(\gamma_0) = \sum B_{vm} \cos(\gamma_{0v})$

Магнитное поле обмотки возбуждения

В случае неявнополюсной СМ – обычный гармонический анализ

Катушки с $w_{\kappa} \rightarrow$ ступенчатая волна МДС *F* → гармоники МДС с амплитудой $F_{\rm vm} = \frac{2qk_{\rm pv}}{\pi v} (iw_{\rm K})$ или так $F_{vm} = \frac{4k_{pv}}{\pi v} (iw)$ где $w = \frac{w_{\kappa}q}{2}$ – число витков OB (на полюс) Коэффициент распределения $k_{pv} = \frac{\sin \frac{qv\gamma_z}{2}}{q\sin \frac{v\gamma_z}{2}}$ $\gamma_z = \frac{\pi t_z}{r}$ – угловой размер зубцового деления При равномерном зазоре гармоники индукции находят по гармоникам МДС $B_{\rm vm} = \frac{\mu_0 F_{\rm vm}}{S}$

46

Магнитное поле обмотки возбуждения

Особенность гармоник поля возбуждения – все гармоники вращаются со скоростью вращения ротора $\Omega_v = \Omega$ (форма поля возбуждения не изменяется)

Но электрические скорости гармоник поля возбуждения оказываются различны

 $\omega_{v} = \Omega_{v} p_{v} = v \Omega$

(чем больше v, тем выше скорость перемещения гармоники поля на периоде обмотки)

47

Вращающееся поле создает переменное потокосцепление с обмоткой и наводит в ней ЭДС

Используя гармонические функции легко найти ЭДС

Рассмотрим волну основной гармоники индукции $B = B_1$ Ось катушки $w_{\rm k}$ с шагом $y_{\rm k}$ расположена в точке $x_{\rm k}$ (в угловых величинах $\gamma_{\rm k} = x_{\rm k} / R$, $\gamma_{\rm y} = y_{\rm k} / R$)

Волна индукции B перемещается со скоростью Ω и в момент времени t находится в точке $\Omega \cdot t$

Поток, сцепленный с каждым витком катушки,

 $\Phi = \int_{S_y} BdS = \int_{S_y} d\Phi$ где $S_y = y_k l_\delta$ – площадь катушки

Элементарный поток $d\Phi$,

48

сцепленный с элементом катушки $dS = l_{\delta}dx = l_{\delta}Rd\gamma$, может быть найден как $d\Phi = BdS = Bl_{\delta}Rd\gamma$ на всей ширине катушки от $\gamma_{\kappa}^{n} = \gamma_{\kappa} - \gamma_{\nu}/2$ до $\gamma_{\kappa}^{n} = \gamma_{\kappa} + \gamma_{\nu}/2$

Считая, что поле по длине l_{δ} однородно, найдем весь поток, сцепленный с витком катушки

$$\Phi = \int_{S_{y}} d\Phi = \int_{\gamma_{\kappa}^{n}}^{\gamma_{\kappa}^{n}} Bl_{\delta}Rd\gamma = l_{\delta}R\int_{\gamma_{\kappa}^{n}}^{\gamma_{\kappa}^{n}} B_{1m}\cos(\omega t - p\gamma)d\gamma$$
$$= \frac{B_{1m}l_{\delta}R}{p}\sin(\omega t - p\gamma)\Big|_{\gamma_{\kappa}^{n}}^{\gamma_{\kappa}^{n}}$$

После подстановки пределов интегрирования и преобразования синусов суммы и разности углов получим

$$\Phi = \frac{2}{\pi} \tau l_{\delta} B_{1m} \sin \frac{\pi y_{\kappa}}{2\tau} \cos \left(\omega t - p \gamma_{\kappa} \right) \quad \text{или} \quad \Phi = \Phi_{m} k_{y} \cos \left(\omega t - \alpha_{\kappa} \right)$$

Здесь
$$\Phi_m = \frac{2}{\pi} \tau l_{\delta} B_{1m}$$
 – максимальный поток,
сцепленный с катушкой без укорочения шага
 $k_y = \sin \frac{\pi y_{\kappa}}{2\tau}$ – коэффициент укорочения катушки

 $\alpha_{\kappa} = p \gamma_{\kappa}$ – электрический угол положения оси катушки

Потокосцепление вращающейся волны поля с катушкой, имеющей число витков w_{κ}

 $\Psi = w_{\kappa} \Phi = w_{\kappa} k_{y} \Phi_{m} \cos(\omega t - \alpha_{\kappa})$ (мгновенное значение)

ЭДС, наведенная в катушке изменяющимся потокосцеплением $e = -\frac{d\Psi}{dt} = \omega w_{\kappa} k_{y} \Phi_{m} \sin(\omega t - \alpha_{\kappa})$ или $e = \sqrt{2} E_{\kappa} \sin(\omega t - \alpha_{\kappa})$

 $E_{\rm k}$ – действующее значение ЭДС катушки $E_{\rm k} = \frac{\omega}{\sqrt{2}} w_{\rm k} k_{\rm y} \Phi_m = \frac{2\pi}{\sqrt{2}} f w_{\rm k} k_{\rm y} \Phi_m$

Потокосцепление и ЭДС удобно представить в виде комплексных функций

Мгновенные значения могут быть найдены как

 $\Psi = \operatorname{Re}(\dot{\Psi}_{\kappa m}) = \operatorname{Re}(\Psi_{\kappa m} e^{j(\omega t - \alpha_{\kappa})})$ $e = \operatorname{Re}(\dot{E}_{\kappa}) = \operatorname{Re}(\sqrt{2}E_{\kappa} e^{j(\omega t - \alpha_{\kappa} - \pi/2)})$ Причем $\dot{E}_{\kappa} = -j\frac{\omega}{\sqrt{2}}\dot{\Psi}_{\kappa m}$

50

Используя комплексные функции можно найти потокосцепление и ЭДС катушечной группы

$$\dot{\Psi}_{\Gamma m} = \sum_{i=1}^{q} \dot{\Psi}_{\kappa m i}$$
 $\dot{E}_{\Gamma} = \sum_{i=1}^{q} \dot{E}_{\kappa i}$ или $\Psi_{\Gamma m} = q \Psi_{\kappa m} k_{p} = q W_{\kappa} k_{y} k_{p} \Phi_{m}$, $E_{\Gamma} = q E_{\kappa} k_{p}$ Причем $\dot{E}_{\Gamma} = -j \frac{\omega}{\sqrt{2}} \dot{\Psi}_{\Gamma m}$ где k_{p} – коэффициент распределения

Фаза сложной обмотки содержит 2*р* катушечных групп, включенных встречно

Соседние группы смещены на т

или на электрический угол половины периода $\frac{\alpha_p}{2} = \frac{p\gamma_p}{2} = \pi$

Поэтому Ψ и *Е* обратных катушечных групп (*X*) находятся в противофазе с Ψ и *Е* прямых катушечных групп (*A*) В результате в пределах каждой параллельной ветви Ψ и *E* катушечных групп суммируются (алгебраически)

$$\Psi_{\phi m} = \frac{2p}{a} \Psi_{\Gamma m} = \frac{2pqw_{\kappa}}{a} k_{y}k_{p}\Phi_{m} = wk_{o}\Phi_{m}$$
$$E_{\phi} = \frac{\omega}{\sqrt{2}} \Psi_{\phi m} = \frac{2\pi}{\sqrt{2}} fwk_{o}\Phi_{m}$$

Все фазы одинаковы и сдвинуты в пространстве на угол 7

Величины векторов
 Ψ и ЭДС фаз одинаковы ($\Psi_m, E_{\phi})$ и на временной плоскости образуют симметричную звезду

В трехфазной обмотке приняв фазу А за главную,

 $\Psi_{A} = \Psi_{m} \cos(\omega t)$ $\Psi_{B} = \Psi_{m} \cos(\omega t - \alpha_{BA})$ $\Psi_{C} = \Psi_{m} \cos(\omega t - \alpha_{CA})$ $e_{A} = \sqrt{2}E_{\phi} \cos\left(\omega t - \frac{\pi}{2}\right)$

запишем мгновенные значения

$$e_{B} = \sqrt{2}E_{\phi}\cos\left(\omega t - \frac{\pi}{2} - \alpha_{BA}\right)$$
$$e_{C} = \sqrt{2}E_{\phi}\cos\left(\omega t - \frac{\pi}{2} - \alpha_{CA}\right)$$

52

$$_{BA} = \frac{2\pi}{pm} = \frac{\gamma_p}{m}$$
 или эл.угол $\alpha_{BA} = p\gamma_{BA} = \frac{2\pi}{m}$

 Ψ и ЭДС на пространственной плоскости можно изображать едиными векторами $\dot{\Psi} = \Psi_m e^{j\omega t}$ $\dot{E} = \sqrt{2}E_{\phi} e^{j\omega t - \frac{\pi}{2}}$

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

Реальное магнитное поле – совокупность основной и высших гармонических Подход к расчету высших гармонических Ψ и ЭДС аналогичен основной гармонике Каждая v гармоника поля – синусоидальная функция со своей амплитудой B_{vm} , полюсным делением $\tau_v = \tau / v$ угловой скоростью $\Omega_v = \Omega_1 / v$

Она образует с каждой фазой потокосцепление с амплитудой

$$\Psi_{\phi \nu m} = w k_{o\nu} \Phi_{\nu m}$$
 где $k_{o\nu} = k_{y\nu} k_{p\nu} k_{c\nu}$ $\Phi_{\nu m} = \frac{2}{\pi} \tau_{\nu} l_{\delta} B_{\nu m}$

Действующая ЭДС фазы, наведенная v гармоникой поля

$$E_{\phi\nu} = \frac{\omega_{\nu}}{\sqrt{2}} \Psi_{\phi\nu m} = \frac{\omega_{\nu}}{\sqrt{2}} w k_{o\nu} \Phi_{\nu m} = \frac{2\omega_{\nu}}{\sqrt{2}\pi} w k_{o\nu} \frac{\tau}{\nu} l_{\delta} B_{\nu m}$$

Гармоники ЭДС накладываются на основную гармонику и влияют на результирующую ЭДС фазы и электромагнитный момент ($M_{_{\rm ЭM}} = P_{_{\rm ЭM}} / \Omega, P_{_{\rm ЭM}} = mE_{_{\rm \varphi}}I_{_{\rm \varphi}}$)

53

Характер влияния зависит от скорости гармоники

1. ЭДС от пространственных гармоник многофазной обмотки переменного тока

Сранающиеся с разными угловыми скоростями Однако их электрические скорости одинаковы $\omega_{\nu} = \Omega_{\nu} p_{\nu} = \frac{\Omega}{\nu} p\nu = \Omega p = \omega = 2\pi f$ Все такие v гармоники наволят в decurpue

совпадают по фазе с ЭДС от основной гармоники поля → могут складываться арифметически, изменяя амплитуду ЭДС

Результирующая ЭДС остается синусоидальной

Суммарная ЭДС фазы от высших гармонических поля

 $E_{\sigma \pi} = \sum_{\nu \neq 1} E_{\phi \nu} = 2\sqrt{2} f w \tau l_{\delta} \sum_{\nu \neq 1} \frac{k_{o\nu} B_{\nu m}}{\nu} - ЭДС дифференциального рассеяния (от 0,5% до 5% от <math>E_{\phi 1}$)

Не участвует в преобразовании энергии в ЭМ

2. ЭДС от высших гармоник поля обмотки возбуждения

Магнитное поле OB неизменно, все гармоники вращаются с одинаковой скоростью $\Omega_v = \Omega$ При этом электрическая скорость наведенной гармоники ЭДС $\omega_v = \Omega_v p_v = \Omega pv = \omega v = 2\pi f v$

Каждая такая v гармоника наводит в фазе ЭДС временну́ю гармонику, изменяющуюся с частотой $f_v = fv$

Оценить влияние v гармоники можно так

$$\frac{E_{\phi\nu}}{E_{\phi1}} = \frac{k_{o\nu}B_{\nu m}}{k_{1\nu}B_{1m}}$$

Под действием временных гармоник искажается форма ЭДС

Для оценки степени искажений – коэффициент искажения синусоидальности $k_U = \frac{\sqrt{\sum_{v \neq 1} E_{vm}^2}}{E_{1m}} 100\%$ (THD – суммарный коэффициент гармонических искажений)

Нормально допустимое значение в сети с $U_c = 0,38 \text{ кB} - 8,0$; в сети с $U_c = 6...20 \text{ кB} - 5,0$; в сети с $U_c = 35 \text{ кB} - 4,0$; в сети с $U_c = 110...330 \text{ кB} - 2,0$

2. ЭДС от высших гармоник поля обмотки возбуждения

Для минимизации гармонических искажений надо улучшать форму поля OB Но также важно правильно проектировать обмотку якоря

все гармоники ЭДС и $k_U = 28\%$

Если обмотка соединена в Y, в линейных ЭДС нет v = 3и $k_U = 12,5\%$

Индуктивности многофазных обмоток

Система токов многофазной обмотки создает спектр гармоник поля в зазоре Гармоники поля образуют потокосцепления с фазами обмотки Коэффициент пропорциональности между током и потокосцеплением – индуктивность (при µ_{ст} = Const) Магнитное поле принято разделять на главное поле (взаимоиндукции) и поле рассеяния

Главное магнитное поле соответствует основной гармонике поля в зазоре B_1

Его тоже можно разделить на главное поле от токов статора

$$B_{11m} = \frac{\mu_0 F_{11m} C_{11}}{\delta''} \approx \frac{\mu_0 F_{11m}}{(\delta k_{\delta 2}) k_{\delta 1}}$$

и главное поле от токов ротора

$$B_{21m} = \frac{\mu_0 F_{21m} C_{21}}{\delta'} \approx \frac{\mu_0 F_{21m}}{\left(\delta k_{\delta 1}\right) k_{\delta 2}}$$

57

Магнитное поле рассеяния

образовано токами I_1 , I_2 , не создающими основную гармонику поля в зазоре

Главная индуктивность фазы

– определяется главным потокосцеплением фазы от тока этой фазы

Пусть по фазе *A* протекает гармонический ток I_A Амплитуда основной гармоники МДС фазы $F_{\phi 1m} = \frac{2\sqrt{2}I_A w_1 k_{o1}}{\pi n}$

Создает основную гармонику поля с $B_{11m} = \frac{\mu_0 F_{\phi 1m}}{\delta k_s} = \frac{2\sqrt{2I_A w_1 k_{o1}} \mu_0}{\pi n \delta k_s}$ Ее потокосцепление с фазой $\Psi_{AAm} = w_1 k_{o1} \Phi_m = w_1 k_{o1} \frac{2}{\pi} \tau l_{\delta} B_{11m}$ Тогда отношение амплитуды потокосцепления к амплитуде тока $L_{AA} = \frac{\Psi_{AAm}}{\sqrt{2}I_{\star}} = \frac{4\mu_0}{p\pi^2} (w_1 k_{o1})^2 \frac{\tau l_{\delta}}{\delta k_s} -$ главная индуктивность фазы

 L_{AA} зависит от геометрии зазора (б и τl_{δ}) и обмоточных данных ($w_1 k_{o1}$ и p) L_{AA} не зависит от положения ротора (при гладком роторе)

58

Главная взаимная индуктивность между фазами

– определяется главным потокосцеплением фазы от тока другой фазы

Потокосцепление фазы с волной поля зависит от положения фазы относительно начала координат (относительно возбужденной фазы)

$$\Psi_{BAm} = w_1 k_{o1} \Phi_m \cos(\alpha_{BA}) = \Psi_{AAm} \cos(\alpha_{BA})$$

Тогда главная взаимная индуктивность между фазами

$$L_{BA} = \frac{\Psi_{BAm}}{\sqrt{2}I_A} = \frac{\Psi_{AAm}\cos(\alpha_{BA})}{\sqrt{2}I_A} = L_{AA}\cos(\alpha_{BA})$$

Для 3-фазной обмотки
$$\alpha_{BA} = \frac{2\pi}{3}, \quad \alpha_{CA} = \frac{4\pi}{3}$$

Тогда $L_{BA} = L_{CA} = -\frac{1}{2}L_{AA}$

Главная взаимная индуктивность между фазами первичной и вторичной обмоток

– определяется главным потокосцеплением фазы от тока другой фазы

и также зависит от угла между осями фаз

ями фаз Потокосцепление фазы *b* с волной поля, $\Psi_{bAm} = w_2 k_{o2} \Phi_m \cos(\alpha_{bA})$ созданного фазой *A* $= w_2 k_{o2} \frac{2}{2} \tau l_{\delta} B_{11m} \cos(\alpha_{bA})$

где основная гармоника поля, созданная фазой *А*

$$= w_2 k_{o2} - \frac{1}{\pi} \tau l_{\delta} B_{11m} q$$
$$_m = \frac{\mu_0 F_{\phi 1m}}{\delta k_{\delta}} = \frac{2\sqrt{2}I_A w_1 k_{o1} \mu_0}{\pi p \delta k_{\delta}}$$

Тогда главная взаимная индуктивность между фазами *b* и *A*

$$L_{bA} = \frac{\Psi_{bAm}}{\sqrt{2}I_A} = L_m \cos(\alpha_{bA})$$

 $L_m = \frac{4\mu_0}{p\pi^2} \left(w_1 k_{o1} w_2 k_{o2} \right) \frac{\tau l_\delta}{\delta k_s}$

где L_m – максимальная взаимная индуктивность (когда оси фаз совпадают)

При вращении ротора угол $\alpha_{bA} = p \Omega \cdot t$ постоянно возрастает, а индуктивность L_{bA} изменяется периодически

 B_1

Главная индуктивность обмотки

– индуктивность фазы обмотки с учетом влияния всех остальных фаз этой обмотки

$$L_{11} = \frac{\text{Re}(\Psi_{Am})}{\text{Re}(\dot{I}_{Am})}$$
 где для 3-фазной обмотки $\dot{\Psi}_{Am} = \dot{I}_{Am}L_{AA} + \dot{I}_{Bm}L_{BA} + \dot{I}_{Cm}L_{CA}$

1. Для токов прямой и обратной последовательности $\dot{I}_{Am} + \dot{I}_{Bm} + \dot{I}_{Cm} = 0$ или $\dot{I}_{Am} = -(\dot{I}_{Bm} + \dot{I}_{Cm})$ в 3-фазной обмотке кроме того $L_{BA} = L_{CA} = -\frac{1}{2}L_{AA}$ T.e. $\dot{\Psi}_{Am} = \dot{I}_{Am}L_{AA} + L_{BA}(\dot{I}_{Bm} + \dot{I}_{Cm}) = \dot{I}_{Am}L_{AA} - \dot{I}_{Am}L_{BA} = \dot{I}_{Am}L_{AA}(1+\frac{1}{2})$ Тогда главная индуктивность 3-фазной обмотки $L_{11} = \frac{3}{2}L_{AA} = \frac{6\mu_0}{p\pi^2} (w_1 k_{o1})^2 \frac{\tau l_{\delta}}{\delta k_s}$ Главная индуктивность m_1 -фазной обмотки $L_{11} = \frac{m_1}{2} L_{AA} = \frac{2m_1\mu_0}{p\pi^2} (w_1k_{o1})^2 \frac{\tau l_{\delta}}{\delta k_{o1}}$ 2. Для токов нулевой последовательности $\dot{I}_{A0m} = \dot{I}_{B0m} = \dot{I}_{C0m}$ $\dot{\Psi}_{A0m} = \dot{I}_{A0m} \left(L_{AA} + L_{BA} + L_{CA} \right)$ в 3-фазной обмотке и главная индуктивность обмотки $L_{11(0)} = L_{AA} + L_{BA} + L_{CA} = L_{AA} - \frac{1}{2}L_{AA} - \frac{1}{2}L_{AA} = 0$ 61

Главная взаимная индуктивность между фазой первичной обмотки и всей вторичной обмоткой

– определяется потокосцеплением фазы А с полем, созданным всей вторичной обмоткой

Ток вторичной обмотки
$$I_2$$
 создает
основную гармонику МДС вторичной обмотки $F_{21m} = \frac{m_2 \sqrt{2} I_2 w_2 k_{o2}}{\pi p}$
Которая образует основную гармонику поля $B_{21m} = \frac{\mu_0 F_{21m}}{\delta k_\delta} = \frac{m_2 \sqrt{2} I_2 w_2 k_{o2} \mu_0}{\pi p \delta k_\delta}$
Максимальное потокосцепление этого поля с фазой A $\Psi_{Am} = w_1 k_{o1} \Phi_m = \frac{2}{\pi} \tau l_\delta w_1 k_{o1} B_{21m}$
(когда ось поля совпадает с осью фазы)
Тогда главная взаимная индуктивность
(ее максимальное значение) $L_{12m} = \frac{\Psi_{Am}}{\sqrt{2} I_2} = \frac{2m_2 \mu_0}{p \pi^2} (w_1 k_{o1} w_2 k_{o2}) \frac{\tau l_\delta}{\delta k_\delta}$
Вспомним, что главная взаимная индуктивность $L_m = \frac{4 \mu_0}{p \pi^2} (w_1 k_{o1} w_2 k_{o2}) \frac{\tau l_\delta}{\delta k_\delta}$
При этом главная взаимная индуктивность $L_{12m} = \frac{m_2}{2} L_m$ $L_{21m} = \frac{m_1}{2} L_m$

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

Выражения для всех гармоник аналогичны, Надо лишь учитывать разные полюсные деления $\tau_v = \tau/v$

Индуктивность фазы для v гармонической поля

Индуктивность обмотки для у гармонической поля

1. Для токов прямой и обратной последовательности

а) для гармоник, отсутствующих в поле 3-фазной обмотки
$$\dot{\Psi}_{Amv} = \dot{I}_{Amv}L_{AAv} + \dot{I}_{Bmv}L_{BAv} + \dot{I}_{Cmv}L_{CAv}$$

(v = 3c)
поскольку $L_{AAv} = L_{BAv} = L_{CAv}$ то $\dot{\Psi}_{Amv} = L_{AAv}\left(\dot{I}_{Amv} + \dot{I}_{Bmv} + \dot{I}_{Cmv}\right)$
поскольку $\dot{I}_{Amv} + \dot{I}_{Bmv} + \dot{I}_{Cmv} = 0$ то $\dot{\Psi}_{Amv} = 0$ и индуктивность $L_{1v} = 0$

б) для гармоник, присутствующих в поле 3-фазной обмотки $\dot{\Psi}_{Amv} = \dot{I}_{Amv}L_{AAv} + \dot{I}_{Bmv}L_{BAv} + \dot{I}_{Cmv}L_{CAv}$ (v = 1+2mk) поскольку $L_{BAv} = L_{CAv} = -\frac{1}{2}L_{AAv}$ и $\dot{I}_{Amv} + \dot{I}_{Bmv} + \dot{I}_{Cmv} = 0$

то индуктивность
$$L_{1\nu} = \frac{3}{2} L_{AA\nu}$$

где
$$L_{AAv} = \frac{4\mu_0}{p\pi^2} \frac{\left(w_1 k_{ov}\right)^2}{v^2} \tau l_\delta \lambda_{1v}$$

Индуктивность обмотки для у гармонической поля

2. Для токов нулевой последовательности

а) для гармоник, отсутствующих в поле 3-фазной обмотки $\dot{\Psi}_{A0mv} = \dot{I}_{A0mv}L_{AAv} + \dot{I}_{B0mv}L_{BAv} + \dot{I}_{C0mv}L_{CAv}$ (v = 3c) поскольку $L_{AAv} = L_{BAv} = L_{CAv}$ и $\dot{I}_{A0mv} = \dot{I}_{B0mv} = \dot{I}_{C0mv}$ то $\dot{\Psi}_{A0mv} = 3\dot{I}_{A0mv}L_{AAv}$ и индуктивность $L_{1(0)v} = 3L_{AAv}$

б) для гармоник, присутствующих в поле 3-фазной обмотки $\dot{\Psi}_{A0mv} = \dot{I}_{A0mv}L_{AAv} + \dot{I}_{B0mv}L_{BAv} + \dot{I}_{C0mv}L_{CAv}$ (v = 1+2mk) поскольку $\dot{I}_{A0mv} = \dot{I}_{B0mv} = \dot{I}_{C0mv}$ то $\dot{\Psi}_{A0mv} = \dot{I}_{A0mv} \left(L_{AAv} + L_{BAv} + L_{CAv}\right)$ поскольку $L_{BAv} = L_{CAv} = -\frac{1}{2}L_{AAv}$ то $\dot{\Psi}_{A0mv} = 0$ и индуктивность $L_{1(0)v} = 0$

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

В общем случае многофазной обмотки для гармоник, присутствующих в результирующем поле

Индуктивность самоиндукции фазы 0 по v гармонике

$$L_{00\nu} = \frac{4\mu_0}{p\pi^2} \frac{(w_1 k_{0\nu})^2}{\nu^2} \tau l_{\delta} \lambda_{1\nu}$$

где число витков в фазе для простой обмотки $w'_1 = \frac{pqw_{\kappa}}{a}$ для сложной обмотки $w_1 = \frac{2pqw_{\kappa}}{a}$ Угол между фазой *n* и фазой 0 для простой обмотки $\alpha_{0nv} = \frac{2\pi}{m'} nv$ для сложной обмотки $\alpha_{0nv} = \frac{2\pi}{m} nv$ по v гармонике

66

Взаимная индуктивность между фазами 0 и п по v гармонике

$$L_{0n\nu} = L_{00\nu} \cos\left(\alpha_{0n\nu}\right)$$

Полная индуктивность обмотки по v гармонике

для сложной обмотки

для простой обмотки

$$L_{1\nu} = \frac{2m'\mu_0}{p\pi^2} \frac{(w_1'k_{o\nu})^2}{\nu^2} \tau l_{\delta}\lambda_{1\nu}$$
$$L_{1\nu} = \frac{2m\mu_0}{p\pi^2} \frac{(w_1k_{o\nu})^2}{\nu^2} \tau l_{\delta}\lambda_{1\nu}$$

 α_{0r}

Поле рассеяния образовано токами статора и ротора, не создающими основную гармонику поля в зазоре Для этого основные гармоники МДС от токов статора и ротора должны быть равны по величине и противоположны по фазе

$$\dot{F}_{11m} = -\dot{F}_{21m}$$

По величине: $\frac{m_1 \sqrt{2} I_1 w_1 k_{o1}}{p \pi} = \frac{m_2 \sqrt{2} I_2 w_2 k_{o2}}{p \pi}$ Т.е. должно быть соотношение токо

соотношение токов

 $I_2 = \frac{m_1 w_1 k_{o1}}{m_2 w_2 k_{12}} I_1$

Полевой расчет поля рассеяния

- задать геометрию ЭМ и свойства материалов
- задаться токами I_1 и I_2 (с учетом направлений)
- рассчитать магнитное поле
- определить потокосцепления фаз 1 и 2 сердечников
- рассчитать индуктивности рассеяния (с учетом влияния всех фаз всех обмоток)

Не забыть лобовое рассеяние

67

На практике, раз уж мы приняли допущение о линейности магнитной цепи, можно применять принцип суперпозиции, рассматривая поля по отдельности

Магнитное поле рассеяния ЭМ

- пазовое рассеяние
 - пазы статора
 - пазы ротора
- лобовое рассеяние
 - лобовые части обмотки статора
 - лобовые части обмотки ротора
- дифференциальное рассеяние
 - высшие гармоники поля от токов статора
 - высшие гармоники поля от токов ротора

Каждая катушка создает поля рассеяния

- пазовое Ф_п
- лобовое $\Phi_{\rm n}$
- дифференциальное Ф_{диф}

Индуктивность рассеяния одной стороны катушки

$$L_{\sigma\kappa} = \frac{\sum \Psi_{\sigma}}{\sqrt{2}I_{A}} = \frac{\sum N_{\pi}\Phi_{\sigma}}{\sqrt{2}I_{A}} = N_{\pi}\frac{\sum F_{Am}\Lambda_{\sigma}}{\sqrt{2}I_{A}} = N_{\pi}\frac{\sum N_{\pi}\sqrt{2}I_{A}\Lambda_{\sigma}}{\sqrt{2}I_{A}} = N_{\pi}^{2}\sum \Lambda_{\sigma}$$

$$N_{\rm m}$$
 – число проводников в пазу
($N_{\rm m} = 2w_{\rm k}$ или $N_{\rm m} = w_{\rm k}$)

Фаза обмотки расположена в 2pq пазах, но разбита на а параллельных ветвей

Индуктивность одной
$$L_{\sigma a} = N_{\pi}^{2}\Lambda_{\Sigma\sigma} \cdot 2\frac{pq}{a}$$
 Индуктивность фазы $L_{\sigma} = \frac{1}{a}N_{\pi}^{2}\Lambda_{\Sigma\sigma}2\frac{pq}{a}$
Число витков фазы $w = w_{\kappa}\frac{2pq}{a} = \frac{N_{\pi}}{2}\frac{2pq}{a} = N_{\pi}\frac{pq}{a}$ в однослойной обмотке $w = w_{\kappa}\frac{pq}{a} = N_{\pi}\frac{pq}{a}$
Тогда индуктивность рассеяния фазы $L_{\sigma} = 2w^{2}\frac{1}{pq}\Lambda_{\Sigma\sigma}$ или $L_{\sigma} = 2w^{2}\frac{\mu_{0}l_{\delta}}{pq}\lambda_{\sigma}$ где $\lambda_{\sigma} = \lambda_{\sigma\pi} + \lambda_{\sigma\pi} + \lambda_{\sigma\pi}$
— коэффициент проводимости

Для двухслойной обмотки λ_{оп} должен учитывать укорочение шага катушки

Обмотки сердечников 1 и 2 различны и рассчитываются как

• Индуктивность рассеяния обмотки 1 сердечника

$$L_{\sigma 1} = 2\mu_0 w_1^2 \frac{l_1}{pq_1} \lambda_{\sigma 1}$$

• Индуктивность рассеяния обмотки 2 сердечника

$$L_{\sigma 2} = 2\mu_0 w_2^2 \frac{l_2}{pq_2} \lambda_{\sigma 2}$$

где коэффициенты магнитной проводимости для потокосцепления рассеяния

70

$$\begin{split} \lambda_{\sigma 1} &= \lambda_{\sigma \pi 1} + \lambda_{\sigma \pi 1} + \lambda_{\sigma \pi 1} \\ \lambda_{\sigma 2} &= \lambda_{\sigma \pi 2} + \lambda_{\sigma \pi 2} + \lambda_{\sigma \pi 2} \end{split}$$

Пазовое рассеяние

а) численный расчет поля пазового рассеяния

- модель одиночного паза (можно на ед.длины l = 1 м)
- насыщение не влияет $\rightarrow \mu_{ct} = \infty$
- граничные условия (можно учесть симметрию)
- ток паза *i*_п (произвольно)
- расчет поля
- определение потокосцеплений
 - потокосцепление токовой части паза (можно Ч катушки)
 - потокосцепление безтоковой части паза (можно Ф)
 - потокосцепление по головкам зубцов (можно Φ)
- потокосцепление пазового рассеяния (полное в Вб)

 $\Psi_{\sigma n} = \Psi_{ni} + \Psi_n + \Psi_\Gamma$ коэффициент проводимости

$$\lambda_{\sigma \pi} = \frac{\Psi_{\sigma \pi}}{i_{\pi}} \frac{1}{\mu_0 l}$$

Пазовое рассеяние

б) использование инженерных методик (книги по проектированию ЭМ)

Например, для паза прямоугольной формы

Коэффициент проводимости пазового рассеяния

$$\lambda_{\sigma \Pi} = \lambda_{\Pi i} + \lambda_{\Pi} + \lambda_{\Gamma} = \frac{h_i}{3b_{\Pi}} + \frac{h}{b_{\Pi}} + \lambda_{\Gamma}$$

Коэффициент проводимости рассеяния по головкам зубцов $\lambda_{\Gamma} = \frac{\delta}{b_{\Pi}} - \frac{\gamma'}{4} - \frac{\Theta}{2}$ $A \left(1 - \frac{1}{2} - \frac{1}{2} \right) = (L_{\Gamma})^{2}$

где
$$\gamma' = \frac{4}{\pi} \left(\frac{1}{\sqrt{a_{\pi}}} \operatorname{arctg} \frac{1}{\sqrt{a_{\pi}}} - \ln \sqrt{1 + \frac{1}{a_{\pi}}} \right) \qquad a_{\pi} = \left(\frac{b_{\pi}}{2\delta} \right)^2 \qquad \Theta = \frac{\ln 4}{\pi}$$

Для двухслойной обмотки надо учесть укорочение катушки

72

$$L_{\sigma \Pi} = \left(\frac{h_i}{3b_{\Pi}} + \frac{h}{b_{\Pi}} + \lambda_{\Gamma}\right)\frac{3\beta + 1}{4}$$
Лобовое рассеяние

а) численный расчет поля лобового рассеяния (3D) – крайне редко
 б) использование инженерных методик

В большинстве случае учитывают только относительный вылет лобовой части катушки

$$\beta_{\rm B} = \frac{l_{\rm B}}{y} = \frac{l_{\rm B}}{\beta\tau}$$

Коэффициент проводимости лобового рассеяния

$$\lambda_{\rm star} = 0,34\sqrt{\beta_{\rm B}+0,1}\frac{\beta\tau q}{l_{\rm ct}}$$

Более точный вариант – методика И.Майе

- физическое моделирование полей лобового рассеяния
- метод планирования эксперимента
- полиномиальные зависимости λ_{σп}
- расчет λ_{σп} для базовой обмотки
- поправочные коэффициенты для прочих обмоток

Лобовое рассеяние по методике И.Майе

Характерные размеры

74

Ширинский С.В., каф. ЭМЭЭА, НИУ "МЭИ"

Лобовое рассеяние по методике И.Майе

По результатам экспериментов получена эмпирическая формула для расчета коэффициента проводимости лобового рассеяния (для токов прямой и обратной последовательности)

Для обмотки 1

$$\lambda_{\sigma 1\pi} = \frac{l_{S1}}{2l_1q_1} \left(\lambda_{11} - \lambda_{12} \right)$$

Здесь коэффициент проводимости самоиндукции лобового рассеяния обмотки 1

коэффициент проводимости взаимоиндукции лобового рассеяния обмотки 1 с обмоткой 2

коэффициенты проводимости для базовой обмотки

Базовая обмотка имеет 2p = 6, диаметральный шаг (укорочение $\beta = 1$), соотношение $a / \tau = 0,225$, соотношение $h_{22} / h_{21} = 1$

Отличия всех прочих обмоток учитываются поправочными коэффициентами *k* $\lambda_{11} = k_p k_\beta k_{c1} \lambda_{11}'$

Аналогично для обмотки 2

 $\lambda_{12} = k_p k_\beta k_a k_h k_{c2} \lambda'_{12}$ $\lambda'_{11} = 2, 4q_1^2 \qquad \lambda'_{12} = 1,45q_1^2$

Коэффициент проводимости лобового рассеяния для токов нулевой последовательности

 $\lambda_{\sigma 2\pi} = \frac{l_{S2}}{2l_2 q_2} \left(\lambda_{22} - \lambda_{21} \right)$

$$\lambda_{\sigma 1 \pi} = \frac{l_{S1}}{2l_1 q_1} \lambda_{10} \qquad \lambda_{10} = k_p k_\beta k_{c1} \lambda_{10}' \qquad \lambda_{10}' = 0,31 q_1^2$$

Лобовое рассеяние по методике И.Майе

Поправочные коэффициенты

Учет кривизны лобовой части

Учет укорочения шага обмотки

Учет расстояния между обмотками разных сердечников

Учет соотношения вылетов лобовых частей

2 <i>p</i>	2	4	6	8, 10	
k _p	1,08	1,04	1,0	0,97	
β	0,75	0,834	0,918	1,0	
k_{eta}	0,935	0,965	0,985	1,0	
<i>a</i> /τ	0,15	0,225	0,3		
k _a	1,12	1,0	0,885		

76

Промежуточные значения можно получать с помощью линейной интерполяции

$h_{\scriptscriptstyle 32}/h_{\scriptscriptstyle 31}$	0,15	0,4	0,5	0,8	1,0	1,25	2,0	2,5	7,0
k_h	0,57	0,73	0,79	0,94	1,0	1,05	1,12	1,15	1,47

Учет расстояния до ферромагнитных те

ел: при
$$\frac{c_{11}}{\tau} > \frac{1}{3}$$
 и $\frac{c_{22}}{\tau} > \frac{1}{3}$ можно принять $k_{c1} = 1$ и $k_{c2} = 1$

– обусловлено высшими гармоническими поля в зазоре

ЭДС дифференциального рассеяния $E_{\sigma \pi} = \sum_{v \neq 1} E_{\phi v} = 2\sqrt{2} f w \tau l_{\delta} \sum_{v \neq 1} \frac{k_{ov} B_{vm}}{v}$

Поскольку пространственные гармоники созданы током I_1 , можно перейти к равенству

где индуктивное сопротивление дифференциального рассеяния является суммой индуктивных сопротивлений для высших гармонических поля

Тогда коэффициент проводимости дифференциального рассеяния $\lambda_{\sigma 1 \pi} = \frac{l_{z1}}{12\delta k_{\delta 2}} \zeta$ (в формуле для полной индуктивности рассеяния) можно записать как

Т.к. ζ близко к 1, часто считают упрощенно $\lambda_{\sigma_{1,\alpha}} = \frac{t_{z_1}}{12\delta k_{s_2}}$

$$x_{\sigma \pi} = \sum_{\nu \neq 1} x_{1\nu}$$

 $\dot{E}_{\sigma\pi} = -j\dot{I}_1 x_{\sigma\pi}$

где
$$\zeta = 3 \left(\frac{z_1}{\pi p}\right)^2 \sum_{\nu \neq 1} \left(\frac{k_{o1\nu}}{\nu}\right)^2 C_{1\nu}$$

Найденное значение $\lambda_{\sigma\pi}$ часто оказывается завышенным

При расчете ζ учитывается влияние высших гармонических поля, созданных переменным током многофазной обмотки

- Высшие гармонические поля, созданные током статора,
 вращаются относительно ротора со скоростью скольжения (Ω_ν Ω)
 - В обмотке ротора они наводят ЭДС с частотой скольжения
 - В замкнутой обмотке появляются токи ротора, противодействующие породившему их полю v гармоники статора

Демпфирующее действие обмотки ротора уменьшает высшие гармонические поля статора

78

- → уменьшаются наведенные ЭДС
- → уменьшается $\lambda_{\sigma_{d}}$ и $x_{\sigma_{d}}$

Демпфирующее действие оказывается заметным только в АД с КЗ ротором (там и надо уточнять $x_{\sigma\pi}$ с учетом демпфирования)

Например, рассмотрим v гармонику поля статора такую, что $\tau_v = 4t_{z2}$

Чем больше отношение τ_v / t_{z2} , тем лучше демпфирование

79

- площадь A определяет поток от $F_{1\nu}$, сцепленный с контуром t_{z2} \rightarrow наводит ЭДС, создает ток в контуре и его МДС $F_{2\nu}$
- площадь *В* определяет компенсирующий поток от МДС *F*_{2v}
- тогда разница (*A B*) характеризует нескомпенсированный поток (собственно рассеяние с учетом демпфирования)

Полное демпфирование при $t_{z2} \to 0 \ (z_2 \to \infty)$ Нет демпфирования при $t_{z2} = 2\tau$

Для учета демпфирования по v гармонике используют коэффициент демпфирования D_v

$$x_{1\nu(\pi)} = x_{1\nu}D_{\nu}$$
 при $D_{\nu} = 0$: $x_{1\nu(\pi)} = 0 \rightarrow$ сильное демпфирование
при $D_{\nu} = 1$: $x_{1\nu(\pi)} = x_{1\nu} \rightarrow$ нет демпфирования

Коэффициент демпфирования определяется двумя факторами $D_v = 1 - f_{2v}^2 f_{cv}^2$ $f_{2v} = \frac{\sin \frac{\gamma_{2v}}{2}}{\frac{\gamma_{2v}}{2}}$ – коэффициент дискретности вторичной обмотки 3десь $\gamma_{2v} = \frac{\pi t_{Z2}}{\tau_v}$ при $t_{z2} \to 0$ $f_{2v} \to 1$ (полное демпфирование) при $t_{z2} = 2\tau_v$ $f_{2v} = 0$ (нет демпфирования) $f_{cv} = \frac{\sin \frac{\gamma_{cv}}{2}}{\frac{\gamma_{cv}}{2}}$ – коэффициент скоса стержней вторичной обмотки 3десь $\gamma_{cv} = \frac{\pi b_c}{\tau_v}$ при $b_c = 0$ $f_{cv} = 1$ (демпфирование возможно) при $b_c = 2\tau_v$ $f_{cv} = 0$ (нет демпфирования)

Тогда коэффициент проводимости дифференциального рассеяния $\lambda_{\sigma 1 \pi} = \frac{t_{z1}}{12\delta k_{\delta 2}} \zeta_{(\pi)}$ где $\zeta_{(\pi)} = 3 \left(\frac{z_1}{\pi p}\right)^2 \sum_{\nu \neq 1} \left(\frac{k_{\sigma 1 \nu}}{\nu}\right)^2 C_{1\nu} D_{\nu}$ с учетом демпфирования